forked from mrq/DL-Art-School
Add switch norm, up dropout rate, detach selector
This commit is contained in:
parent
97d895aebe
commit
96bc80313c
|
@ -7,6 +7,7 @@ from lambda_networks import LambdaLayer
|
|||
from torch.nn import init, Conv2d, MSELoss
|
||||
import torch.nn.functional as F
|
||||
from tqdm import tqdm
|
||||
import torch.distributed as dist
|
||||
|
||||
|
||||
class SwitchedConvHardRoutingFunction(torch.autograd.Function):
|
||||
|
@ -37,11 +38,90 @@ class SwitchedConvHardRoutingFunction(torch.autograd.Function):
|
|||
return grad, grad_sel, grad_w, grad_b, None
|
||||
|
||||
|
||||
"""
|
||||
SwitchNorm is meant to be applied against the Softmax output of an switching function across a large set of
|
||||
switch computations. It is meant to promote an equal distribution of switch weights by decreasing the magnitude
|
||||
of switch weights that are over-used and increasing the magnitude of under-used weights.
|
||||
|
||||
The return value has the exact same format as a normal Softmax output and can be used directly into the input of an
|
||||
switch equation.
|
||||
|
||||
Since the whole point of convolutional switch is to enable training extra-wide networks to operate on a large number
|
||||
of image categories, it makes almost no sense to perform this type of norm against a single mini-batch of images: some
|
||||
of the switches will not be used in such a small context - and that's good! This is solved by accumulating. Every
|
||||
forward pass computes a norm across the current minibatch. That norm is added into a rotating buffer of size
|
||||
<accumulator_size>. The actual normalization occurs across the entire rotating buffer.
|
||||
|
||||
You should set accumulator size according to two factors:
|
||||
- Your batch size. Smaller batch size should mean greater accumulator size.
|
||||
- Your image diversity. More diverse images have less need for the accumulator.
|
||||
- How wide your switch/switching group size is. More groups mean you're going to want more accumulation.
|
||||
|
||||
Note: This norm makes the (potentially flawed) assumption that each forward() pass has unique data. For maximum
|
||||
effectiveness, avoid doing this - or make alterations to work around it.
|
||||
Note: This norm does nothing for the first <accumulator_size> iterations.
|
||||
"""
|
||||
class SwitchNorm(nn.Module):
|
||||
def __init__(self, group_size, accumulator_size=128):
|
||||
super().__init__()
|
||||
self.accumulator_desired_size = accumulator_size
|
||||
self.group_size = group_size
|
||||
self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu'))
|
||||
self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu'))
|
||||
self.register_buffer("accumulator", torch.zeros(accumulator_size, group_size))
|
||||
|
||||
def add_norm_to_buffer(self, x):
|
||||
flat = x.sum(dim=[0, 2, 3])
|
||||
norm = flat / torch.mean(flat)
|
||||
|
||||
self.accumulator[self.accumulator_index] = norm.detach().clone()
|
||||
self.accumulator_index += 1
|
||||
if self.accumulator_index >= self.accumulator_desired_size:
|
||||
self.accumulator_index *= 0
|
||||
if self.accumulator_filled <= 0:
|
||||
self.accumulator_filled += 1
|
||||
|
||||
# Input into forward is a switching tensor of shape (batch,groups,width,height)
|
||||
def forward(self, x: torch.Tensor, update_attention_norm=True):
|
||||
assert len(x.shape) == 4
|
||||
|
||||
# Push the accumulator to the right device on the first iteration.
|
||||
if self.accumulator.device != x.device:
|
||||
self.accumulator = self.accumulator.to(x.device)
|
||||
|
||||
# In eval, don't change the norm buffer.
|
||||
if self.training and update_attention_norm:
|
||||
self.add_norm_to_buffer(x)
|
||||
|
||||
# Reduce across all distributed entities, if needed
|
||||
if dist.is_available() and dist.is_initialized():
|
||||
dist.all_reduce(self.accumulator, op=dist.ReduceOp.SUM)
|
||||
self.accumulator /= dist.get_world_size()
|
||||
|
||||
# Compute the norm factor.
|
||||
if self.accumulator_filled > 0:
|
||||
norm = torch.mean(self.accumulator, dim=0)
|
||||
else:
|
||||
norm = torch.ones(self.group_size, device=self.accumulator.device)
|
||||
x = x / norm.view(1,-1,1,1)
|
||||
|
||||
# Need to re-normalize x so that the groups dimension sum to 1, just like when it was fed in.
|
||||
return x / x.sum(dim=1, keepdim=True)
|
||||
|
||||
|
||||
class SwitchedConvHardRouting(nn.Module):
|
||||
def __init__(self, in_c, out_c, kernel_sz, breadth, stride=1, bias=True, dropout_rate=0.0,
|
||||
include_coupler: bool = False, # A 'coupler' is a latent converter which can make any bxcxhxw tensor a compatible switchedconv selector by performing a linear 1x1 conv, softmax and interpolate.
|
||||
coupler_mode: str = 'standard',
|
||||
coupler_dim_in: int = 0,):
|
||||
def __init__(self,
|
||||
in_c,
|
||||
out_c,
|
||||
kernel_sz,
|
||||
breadth,
|
||||
stride=1,
|
||||
bias=True,
|
||||
dropout_rate=0.0,
|
||||
include_coupler: bool = False, # A 'coupler' is a latent converter which can make any bxcxhxw tensor a compatible switchedconv selector by performing a linear 1x1 conv, softmax and interpolate.
|
||||
coupler_mode: str = 'standard',
|
||||
coupler_dim_in: int = 0,
|
||||
switch_norm: bool = True):
|
||||
super().__init__()
|
||||
self.in_channels = in_c
|
||||
self.out_channels = out_c
|
||||
|
@ -50,12 +130,22 @@ class SwitchedConvHardRouting(nn.Module):
|
|||
self.has_bias = bias
|
||||
self.breadth = breadth
|
||||
self.dropout_rate = dropout_rate
|
||||
if switch_norm:
|
||||
self.switch_norm = SwitchNorm(breadth, accumulator_size=512)
|
||||
else:
|
||||
self.switch_norm = None
|
||||
|
||||
if include_coupler:
|
||||
if coupler_mode == 'standard':
|
||||
self.coupler = Conv2d(coupler_dim_in, breadth, kernel_size=1)
|
||||
elif coupler_mode == 'lambda':
|
||||
self.coupler = LambdaLayer(dim=coupler_dim_in, dim_out=breadth, r=23, dim_k=16, heads=2, dim_u=1)
|
||||
self.coupler = nn.Sequential(nn.Conv2d(coupler_dim_in, coupler_dim_in, 1),
|
||||
nn.BatchNorm2d(coupler_dim_in),
|
||||
nn.ReLU(),
|
||||
LambdaLayer(dim=coupler_dim_in, dim_out=breadth, r=23, dim_k=16, heads=2, dim_u=1),
|
||||
nn.BatchNorm2d(breadth),
|
||||
nn.ReLU(),
|
||||
Conv2d(breadth, breadth, 1))
|
||||
else:
|
||||
self.coupler = None
|
||||
|
||||
|
@ -85,11 +175,14 @@ class SwitchedConvHardRouting(nn.Module):
|
|||
# If a coupler was specified, run that to convert selector into a softmax distribution.
|
||||
if self.coupler:
|
||||
if selector is None: # A coupler can convert from any input to a selector, so 'None' is allowed.
|
||||
selector = input
|
||||
selector = input.detach()
|
||||
selector = F.softmax(self.coupler(selector), dim=1)
|
||||
self.last_select = selector.detach().clone()
|
||||
assert selector is not None
|
||||
|
||||
# Perform normalization on the selector if applicable.
|
||||
if self.switch_norm:
|
||||
selector = self.switch_norm(selector)
|
||||
|
||||
# Apply dropout at the batch level per kernel.
|
||||
if self.training and self.dropout_rate > 0:
|
||||
b, c, h, w = selector.shape
|
||||
|
@ -99,6 +192,10 @@ class SwitchedConvHardRouting(nn.Module):
|
|||
drop = drop.logical_or(fix_blank)
|
||||
selector = drop * selector
|
||||
|
||||
# Debugging variables
|
||||
self.last_select = selector.detach().clone()
|
||||
self.latest_masks = (selector.max(dim=1, keepdim=True)[0].repeat(1,self.breadth,1,1) == selector).float().argmax(dim=1)
|
||||
|
||||
return SwitchedConvHardRoutingFunction.apply(input, selector, self.weight, self.bias, self.stride)
|
||||
|
||||
|
||||
|
@ -107,6 +204,8 @@ class SwitchedConvHardRouting(nn.Module):
|
|||
def convert_conv_net_state_dict_to_switched_conv(module, switch_breadth, ignore_list=[]):
|
||||
state_dict = module.state_dict()
|
||||
for name, m in module.named_modules():
|
||||
if not isinstance(m, nn.Conv2d):
|
||||
continue
|
||||
ignored = False
|
||||
for smod in ignore_list:
|
||||
if smod in name:
|
||||
|
@ -114,8 +213,7 @@ def convert_conv_net_state_dict_to_switched_conv(module, switch_breadth, ignore_
|
|||
continue
|
||||
if ignored:
|
||||
continue
|
||||
if isinstance(m, nn.Conv2d):
|
||||
state_dict[f'{name}.weight'] = state_dict[f'{name}.weight'].unsqueeze(2).repeat(1,1,switch_breadth,1,1)
|
||||
state_dict[f'{name}.weight'] = state_dict[f'{name}.weight'].unsqueeze(2).repeat(1,1,switch_breadth,1,1)
|
||||
return state_dict
|
||||
|
||||
|
||||
|
|
|
@ -0,0 +1,293 @@
|
|||
import os
|
||||
|
||||
import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
import torch.distributed as distributed
|
||||
|
||||
from models.switched_conv_hard_routing import SwitchedConvHardRouting, \
|
||||
convert_conv_net_state_dict_to_switched_conv
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, opt_get
|
||||
|
||||
|
||||
# Upsamples and blurs (similar to StyleGAN). Replaces ConvTranspose2D from the original paper.
|
||||
class UpsampleConv(nn.Module):
|
||||
def __init__(self, in_filters, out_filters, breadth, kernel_size, padding):
|
||||
super().__init__()
|
||||
self.conv = SwitchedConvHardRouting(in_filters, out_filters, kernel_size, breadth, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_filters, dropout_rate=0.4)
|
||||
|
||||
def forward(self, x):
|
||||
up = torch.nn.functional.interpolate(x, scale_factor=2)
|
||||
return self.conv(up)
|
||||
|
||||
|
||||
class Quantize(nn.Module):
|
||||
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5):
|
||||
super().__init__()
|
||||
|
||||
self.dim = dim
|
||||
self.n_embed = n_embed
|
||||
self.decay = decay
|
||||
self.eps = eps
|
||||
|
||||
embed = torch.randn(dim, n_embed)
|
||||
self.register_buffer("embed", embed)
|
||||
self.register_buffer("cluster_size", torch.zeros(n_embed))
|
||||
self.register_buffer("embed_avg", embed.clone())
|
||||
|
||||
def forward(self, input):
|
||||
flatten = input.reshape(-1, self.dim)
|
||||
dist = (
|
||||
flatten.pow(2).sum(1, keepdim=True)
|
||||
- 2 * flatten @ self.embed
|
||||
+ self.embed.pow(2).sum(0, keepdim=True)
|
||||
)
|
||||
_, embed_ind = (-dist).max(1)
|
||||
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype)
|
||||
embed_ind = embed_ind.view(*input.shape[:-1])
|
||||
quantize = self.embed_code(embed_ind)
|
||||
|
||||
if self.training:
|
||||
embed_onehot_sum = embed_onehot.sum(0)
|
||||
embed_sum = flatten.transpose(0, 1) @ embed_onehot
|
||||
|
||||
if distributed.is_initialized() and distributed.get_world_size() > 1:
|
||||
distributed.all_reduce(embed_onehot_sum)
|
||||
distributed.all_reduce(embed_sum)
|
||||
|
||||
self.cluster_size.data.mul_(self.decay).add_(
|
||||
embed_onehot_sum, alpha=1 - self.decay
|
||||
)
|
||||
self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay)
|
||||
n = self.cluster_size.sum()
|
||||
cluster_size = (
|
||||
(self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n
|
||||
)
|
||||
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0)
|
||||
self.embed.data.copy_(embed_normalized)
|
||||
|
||||
diff = (quantize.detach() - input).pow(2).mean()
|
||||
quantize = input + (quantize - input).detach()
|
||||
|
||||
return quantize, diff, embed_ind
|
||||
|
||||
def embed_code(self, embed_id):
|
||||
return F.embedding(embed_id, self.embed.transpose(0, 1))
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, in_channel, channel, breadth):
|
||||
super().__init__()
|
||||
|
||||
self.conv = nn.Sequential(
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(in_channel, channel, 3, padding=1),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(channel, in_channel, 1),
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
out = self.conv(input)
|
||||
out += input
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride, breadth):
|
||||
super().__init__()
|
||||
|
||||
if stride == 4:
|
||||
blocks = [
|
||||
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
|
||||
nn.ReLU(inplace=True),
|
||||
SwitchedConvHardRouting(channel // 2, channel, 5, breadth, stride=2, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel // 2, dropout_rate=0.4),
|
||||
nn.ReLU(inplace=True),
|
||||
SwitchedConvHardRouting(channel, channel, 3, breadth, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel, dropout_rate=0.4),
|
||||
]
|
||||
|
||||
elif stride == 2:
|
||||
blocks = [
|
||||
nn.Conv2d(in_channel, channel // 2, 5, stride=2, padding=2),
|
||||
nn.ReLU(inplace=True),
|
||||
SwitchedConvHardRouting(channel // 2, channel, 3, breadth, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel // 2, dropout_rate=0.4),
|
||||
]
|
||||
|
||||
for i in range(n_res_block):
|
||||
blocks.append(ResBlock(channel, n_res_channel, breadth))
|
||||
|
||||
blocks.append(nn.ReLU(inplace=True))
|
||||
|
||||
self.blocks = nn.Sequential(*blocks)
|
||||
|
||||
def forward(self, input):
|
||||
return self.blocks(input)
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride, breadth
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
blocks = [SwitchedConvHardRouting(in_channel, channel, 3, breadth, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel, dropout_rate=0.4)]
|
||||
|
||||
for i in range(n_res_block):
|
||||
blocks.append(ResBlock(channel, n_res_channel, breadth))
|
||||
|
||||
blocks.append(nn.ReLU(inplace=True))
|
||||
|
||||
if stride == 4:
|
||||
blocks.extend(
|
||||
[
|
||||
UpsampleConv(channel, channel // 2, breadth, 5, padding=2),
|
||||
nn.ReLU(inplace=True),
|
||||
UpsampleConv(
|
||||
channel // 2, out_channel, breadth, 5, padding=2
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
elif stride == 2:
|
||||
blocks.append(
|
||||
UpsampleConv(channel, out_channel, breadth, 5, padding=2)
|
||||
)
|
||||
|
||||
self.blocks = nn.Sequential(*blocks)
|
||||
|
||||
def forward(self, input):
|
||||
return self.blocks(input)
|
||||
|
||||
|
||||
class VQVAE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channel=3,
|
||||
channel=128,
|
||||
n_res_block=2,
|
||||
n_res_channel=32,
|
||||
codebook_dim=64,
|
||||
codebook_size=512,
|
||||
decay=0.99,
|
||||
breadth=8,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.breadth = breadth
|
||||
self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride=4, breadth=breadth)
|
||||
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2, breadth=breadth)
|
||||
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
|
||||
self.quantize_t = Quantize(codebook_dim, codebook_size)
|
||||
self.dec_t = Decoder(
|
||||
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2, breadth=breadth
|
||||
)
|
||||
self.quantize_conv_b = nn.Conv2d(codebook_dim + channel, codebook_dim, 1)
|
||||
self.quantize_b = Quantize(codebook_dim, codebook_size*2)
|
||||
self.upsample_t = UpsampleConv(
|
||||
codebook_dim, codebook_dim, breadth, 5, padding=2
|
||||
)
|
||||
self.dec = Decoder(
|
||||
codebook_dim + codebook_dim,
|
||||
in_channel,
|
||||
channel,
|
||||
n_res_block,
|
||||
n_res_channel,
|
||||
stride=4,
|
||||
breadth=breadth
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
quant_t, quant_b, diff, _, _ = self.encode(input)
|
||||
dec = self.decode(quant_t, quant_b)
|
||||
|
||||
return dec, diff
|
||||
|
||||
def save_attention_to_image_rgb(self, output_file, attention_out, attention_size, cmap_discrete_name='viridis'):
|
||||
from matplotlib import cm
|
||||
magnitude, indices = torch.topk(attention_out, 3, dim=1)
|
||||
indices = indices.cpu()
|
||||
colormap = cm.get_cmap(cmap_discrete_name, attention_size)
|
||||
img = torch.tensor(colormap(indices[:, 0, :, :].detach().numpy())) # TODO: use other k's
|
||||
img = img.permute((0, 3, 1, 2))
|
||||
torchvision.utils.save_image(img, output_file)
|
||||
|
||||
def visual_dbg(self, step, path):
|
||||
convs = [self.dec.blocks[-1].conv, self.dec_t.blocks[-1].conv, self.enc_b.blocks[-4], self.enc_t.blocks[-4]]
|
||||
for i, c in enumerate(convs):
|
||||
self.save_attention_to_image_rgb(os.path.join(path, "%i_selector_%i.png" % (step, i+1)), c.last_select, self.breadth)
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
switched_convs = [('enc_b_blk2', self.enc_b.blocks[2]),
|
||||
('enc_b_blk4', self.enc_b.blocks[4]),
|
||||
('enc_t_blk2', self.enc_t.blocks[2]),
|
||||
('dec_t_blk0', self.dec_t.blocks[0]),
|
||||
('dec_t_blk-1', self.dec_t.blocks[-1].conv),
|
||||
('dec_blk0', self.dec.blocks[0]),
|
||||
('dec_blk-1', self.dec.blocks[-1].conv),
|
||||
('dec_blk-3', self.dec.blocks[-3].conv)]
|
||||
logs = {}
|
||||
for name, swc in switched_convs:
|
||||
logs[f'{name}_histogram_switch_usage'] = swc.latest_masks
|
||||
return logs
|
||||
|
||||
def encode(self, input):
|
||||
enc_b = checkpoint(self.enc_b, input)
|
||||
enc_t = checkpoint(self.enc_t, enc_b)
|
||||
|
||||
quant_t = self.quantize_conv_t(enc_t).permute(0, 2, 3, 1)
|
||||
quant_t, diff_t, id_t = self.quantize_t(quant_t)
|
||||
quant_t = quant_t.permute(0, 3, 1, 2)
|
||||
diff_t = diff_t.unsqueeze(0)
|
||||
|
||||
dec_t = checkpoint(self.dec_t, quant_t)
|
||||
enc_b = torch.cat([dec_t, enc_b], 1)
|
||||
|
||||
quant_b = checkpoint(self.quantize_conv_b, enc_b).permute(0, 2, 3, 1)
|
||||
quant_b, diff_b, id_b = self.quantize_b(quant_b)
|
||||
quant_b = quant_b.permute(0, 3, 1, 2)
|
||||
diff_b = diff_b.unsqueeze(0)
|
||||
|
||||
return quant_t, quant_b, diff_t + diff_b, id_t, id_b
|
||||
|
||||
def decode(self, quant_t, quant_b):
|
||||
upsample_t = self.upsample_t(quant_t)
|
||||
quant = torch.cat([upsample_t, quant_b], 1)
|
||||
dec = checkpoint(self.dec, quant)
|
||||
|
||||
return dec
|
||||
|
||||
def decode_code(self, code_t, code_b):
|
||||
quant_t = self.quantize_t.embed_code(code_t)
|
||||
quant_t = quant_t.permute(0, 3, 1, 2)
|
||||
quant_b = self.quantize_b.embed_code(code_b)
|
||||
quant_b = quant_b.permute(0, 3, 1, 2)
|
||||
|
||||
dec = self.decode(quant_t, quant_b)
|
||||
|
||||
return dec
|
||||
|
||||
|
||||
def convert_weights(weights_file):
|
||||
sd = torch.load(weights_file)
|
||||
import models.vqvae.vqvae_no_conv_transpose as stdvq
|
||||
std_model = stdvq.VQVAE()
|
||||
std_model.load_state_dict(sd)
|
||||
nsd = convert_conv_net_state_dict_to_switched_conv(std_model, 8, ['quantize_conv_t', 'quantize_conv_b',
|
||||
'enc_b.blocks.0', 'enc_t.blocks.0',
|
||||
'conv.1', 'conv.3'])
|
||||
torch.save(nsd, "converted.pth")
|
||||
|
||||
|
||||
@register_model
|
||||
def register_vqvae_norm_hard_switched_conv_lambda(opt_net, opt):
|
||||
kw = opt_get(opt_net, ['kwargs'], {})
|
||||
return VQVAE(**kw)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
v = VQVAE(breadth=8).cuda()
|
||||
print(v(torch.randn(1,3,128,128).cuda())[0].shape)
|
||||
#convert_weights("../../../experiments/50000_generator.pth")
|
|
@ -7,8 +7,7 @@ from torch.nn import functional as F
|
|||
|
||||
import torch.distributed as distributed
|
||||
|
||||
from models.switched_conv_hard_routing import SwitchedConvHardRouting, \
|
||||
convert_conv_net_state_dict_to_switched_conv
|
||||
from models.switched_conv import SwitchedConv, convert_conv_net_state_dict_to_switched_conv
|
||||
from trainer.networks import register_model
|
||||
from utils.util import checkpoint, opt_get
|
||||
|
||||
|
@ -17,7 +16,7 @@ from utils.util import checkpoint, opt_get
|
|||
class UpsampleConv(nn.Module):
|
||||
def __init__(self, in_filters, out_filters, breadth, kernel_size, padding):
|
||||
super().__init__()
|
||||
self.conv = SwitchedConvHardRouting(in_filters, out_filters, kernel_size, breadth, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_filters, dropout_rate=0.2)
|
||||
self.conv = SwitchedConv(in_filters, out_filters, kernel_size, breadth, padding=padding, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_filters)
|
||||
|
||||
def forward(self, x):
|
||||
up = torch.nn.functional.interpolate(x, scale_factor=2)
|
||||
|
@ -84,9 +83,9 @@ class ResBlock(nn.Module):
|
|||
|
||||
self.conv = nn.Sequential(
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(in_channel, channel, 3, padding=1),
|
||||
SwitchedConv(in_channel, channel, 3, breadth, padding=1, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(channel, in_channel, 1),
|
||||
SwitchedConv(channel, in_channel, 1, breadth, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel),
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
|
@ -102,18 +101,18 @@ class Encoder(nn.Module):
|
|||
|
||||
if stride == 4:
|
||||
blocks = [
|
||||
SwitchedConvHardRouting(in_channel, channel // 2, 5, breadth, stride=2, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel, dropout_rate=0.2),
|
||||
SwitchedConv(in_channel, channel // 2, 5, breadth, stride=2, padding=2, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel),
|
||||
nn.ReLU(inplace=True),
|
||||
SwitchedConvHardRouting(channel // 2, channel, 5, breadth, stride=2, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel // 2, dropout_rate=0.2),
|
||||
SwitchedConv(channel // 2, channel, 5, breadth, stride=2, padding=2, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel // 2),
|
||||
nn.ReLU(inplace=True),
|
||||
SwitchedConvHardRouting(channel, channel, 3, breadth, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel, dropout_rate=0.2),
|
||||
SwitchedConv(channel, channel, 3, breadth, padding=1, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel),
|
||||
]
|
||||
|
||||
elif stride == 2:
|
||||
blocks = [
|
||||
SwitchedConvHardRouting(in_channel, channel // 2, 5, breadth, stride=2, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel, dropout_rate=0.2),
|
||||
SwitchedConv(in_channel, channel // 2, 5, breadth, stride=2, padding=2, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel),
|
||||
nn.ReLU(inplace=True),
|
||||
SwitchedConvHardRouting(channel // 2, channel, 3, breadth, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel // 2, dropout_rate=0.2),
|
||||
SwitchedConv(channel // 2, channel, 3, breadth, padding=1, include_coupler=True, coupler_mode='lambda', coupler_dim_in=channel // 2),
|
||||
]
|
||||
|
||||
for i in range(n_res_block):
|
||||
|
@ -133,7 +132,7 @@ class Decoder(nn.Module):
|
|||
):
|
||||
super().__init__()
|
||||
|
||||
blocks = [SwitchedConvHardRouting(in_channel, channel, 3, breadth, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel, dropout_rate=0.2)]
|
||||
blocks = [SwitchedConv(in_channel, channel, 3, breadth, padding=1, include_coupler=True, coupler_mode='lambda', coupler_dim_in=in_channel)]
|
||||
|
||||
for i in range(n_res_block):
|
||||
blocks.append(ResBlock(channel, n_res_channel, breadth))
|
||||
|
@ -172,7 +171,7 @@ class VQVAE(nn.Module):
|
|||
codebook_dim=64,
|
||||
codebook_size=512,
|
||||
decay=0.99,
|
||||
breadth=8,
|
||||
breadth=4,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
@ -261,8 +260,7 @@ def convert_weights(weights_file):
|
|||
import models.vqvae.vqvae_no_conv_transpose as stdvq
|
||||
std_model = stdvq.VQVAE()
|
||||
std_model.load_state_dict(sd)
|
||||
nsd = convert_conv_net_state_dict_to_switched_conv(std_model, 1, ['quantize_conv_t', 'quantize_conv_b',
|
||||
'conv.1', 'conv.3'])
|
||||
nsd = convert_conv_net_state_dict_to_switched_conv(std_model, 4, ['quantize_conv_t', 'quantize_conv_b'])
|
||||
torch.save(nsd, "converted.pth")
|
||||
|
||||
|
||||
|
@ -273,6 +271,6 @@ def register_vqvae_norm_switched_conv_lambda(opt_net, opt):
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
v = VQVAE(breadth=8).cuda()
|
||||
print(v(torch.randn(1,3,128,128).cuda())[0].shape)
|
||||
#convert_weights("../../../experiments/50000_generator.pth")
|
||||
#v = VQVAE()
|
||||
#print(v(torch.randn(1,3,128,128))[0].shape)
|
||||
convert_weights("../../../experiments/4000_generator.pth")
|
||||
|
|
Loading…
Reference in New Issue
Block a user