forked from mrq/DL-Art-School
Add NestedSwitchGenerator
An evolution of SwitchedResidualGenerator, this variant nests attention modules upon themselves to extend the representative capacity of the model significantly.
This commit is contained in:
parent
6f2bc36c61
commit
978036e7b3
235
codes/models/archs/NestedSwitchGenerator.py
Normal file
235
codes/models/archs/NestedSwitchGenerator.py
Normal file
|
@ -0,0 +1,235 @@
|
|||
import torch
|
||||
from torch import nn
|
||||
from models.archs.SwitchedResidualGenerator_arch import ConvBnLelu, create_sequential_growing_processing_block, MultiConvBlock, initialize_weights
|
||||
from switched_conv import BareConvSwitch, compute_attention_specificity
|
||||
from switched_conv_util import save_attention_to_image
|
||||
from functools import partial
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
class Switch(nn.Module):
|
||||
def __init__(self, transform_block, transform_count, init_temp=20, pass_chain_forward=False, add_scalable_noise_to_transforms=False):
|
||||
super(Switch, self).__init__()
|
||||
|
||||
self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)])
|
||||
self.add_noise = add_scalable_noise_to_transforms
|
||||
self.pass_chain_forward = pass_chain_forward
|
||||
|
||||
# And the switch itself, including learned scalars
|
||||
self.switch = BareConvSwitch(initial_temperature=init_temp)
|
||||
self.scale = nn.Parameter(torch.ones(1))
|
||||
self.bias = nn.Parameter(torch.zeros(1))
|
||||
|
||||
# x is the input fed to the transform blocks.
|
||||
# m is the output of the multiplexer which will be used to select from those transform blocks.
|
||||
# chain is a chain of shared processing outputs used by the individual transforms.
|
||||
def forward(self, x, m, chain):
|
||||
if self.pass_chain_forward:
|
||||
pcf = [t.forward(x, chain) for t in self.transforms]
|
||||
xformed = [o[0] for o in pcf]
|
||||
atts = [o[1] for o in pcf]
|
||||
else:
|
||||
if self.add_noise:
|
||||
rand_feature = torch.randn_like(x)
|
||||
xformed = [t.forward(x, rand_feature) for t in self.transforms]
|
||||
else:
|
||||
xformed = [t.forward(x) for t in self.transforms]
|
||||
|
||||
# Interpolate the multiplexer across the entire shape of the image.
|
||||
m = F.interpolate(m, size=x.shape[2:], mode='nearest')
|
||||
|
||||
outputs, attention = self.switch(xformed, m, True)
|
||||
outputs = outputs * self.scale + self.bias
|
||||
|
||||
if self.pass_chain_forward:
|
||||
# Apply attention weights to collected [atts] and return the aggregate.
|
||||
atts = torch.stack(atts, dim=3)
|
||||
attention = atts * attention.unsqueeze(dim=-1)
|
||||
attention = torch.flatten(attention, 3)
|
||||
|
||||
return outputs, attention
|
||||
|
||||
def set_temperature(self, temp):
|
||||
self.switch.set_attention_temperature(temp)
|
||||
if self.pass_chain_forward:
|
||||
[t.set_temperature(temp) for t in self.transforms]
|
||||
|
||||
|
||||
class ResidualBlock(nn.Module):
|
||||
def __init__(self, filters):
|
||||
super(ResidualBlock, self).__init__()
|
||||
self.lelu1 = nn.LeakyReLU(negative_slope=.1)
|
||||
self.bn1 = nn.BatchNorm2d(filters)
|
||||
self.conv1 = nn.Conv2d(filters, filters, kernel_size=3, padding=1)
|
||||
self.lelu2 = nn.LeakyReLU(negative_slope=.1)
|
||||
self.bn2 = nn.BatchNorm2d(filters)
|
||||
self.conv2 = nn.Conv2d(filters, filters, kernel_size=3, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv1(self.lelu1(self.bn1(x)))
|
||||
return self.conv2(self.lelu2(self.bn2(x)))
|
||||
|
||||
|
||||
# Convolutional image processing block that optionally reduces image size by a factor of 2 using stride and performs a
|
||||
# series of residual-block-like processing operations on it.
|
||||
class Processor(nn.Module):
|
||||
def __init__(self, base_filters, processing_depth, reduce=False):
|
||||
super(Processor, self).__init__()
|
||||
self.output_filter_count = base_filters * 2 if reduce else base_filters
|
||||
self.initial = ConvBnLelu(base_filters, self.output_filter_count, kernel_size=1, stride=2 if reduce else 1)
|
||||
self.res_blocks = nn.ModuleList([ResidualBlock(self.output_filter_count) for _ in range(processing_depth)])
|
||||
|
||||
def forward(self, x):
|
||||
x = self.initial(x)
|
||||
for b in self.res_blocks:
|
||||
x = b(x) + x
|
||||
return x
|
||||
|
||||
|
||||
# Convolutional image processing block that constricts an input image with a large number of filters to a small number
|
||||
# of filters over a fixed number of layers.
|
||||
class Constrictor(nn.Module):
|
||||
def __init__(self, filters, output_filters, use_bn=False):
|
||||
super(Constrictor, self).__init__()
|
||||
assert(filters > output_filters)
|
||||
gap = filters - output_filters
|
||||
gap_div_4 = int(gap / 4)
|
||||
self.cbl1 = ConvBnLelu(filters, filters - (gap_div_4 * 2), bn=use_bn)
|
||||
self.cbl2 = ConvBnLelu(filters - (gap_div_4 * 2), filters - (gap_div_4 * 3), bn=use_bn)
|
||||
self.cbl3 = ConvBnLelu(filters - (gap_div_4 * 3), output_filters)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.cbl1(x)
|
||||
x = self.cbl2(x)
|
||||
x = self.cbl3(x)
|
||||
return x
|
||||
|
||||
|
||||
class RecursiveSwitchedTransform(nn.Module):
|
||||
def __init__(self, transform_filters, filters_count_list, nesting_depth, transforms_at_leaf,
|
||||
trans_kernel_size, trans_num_layers, trans_scale_init=1, initial_temp=20, add_scalable_noise_to_transforms=False):
|
||||
super(RecursiveSwitchedTransform, self).__init__()
|
||||
|
||||
self.depth = nesting_depth
|
||||
at_leaf = (self.depth == 0)
|
||||
if at_leaf:
|
||||
transform = partial(MultiConvBlock, transform_filters, transform_filters, transform_filters, kernel_size=trans_kernel_size, depth=trans_num_layers, scale_init=trans_scale_init)
|
||||
else:
|
||||
transform = partial(RecursiveSwitchedTransform, transform_filters, filters_count_list,
|
||||
nesting_depth - 1, transforms_at_leaf, trans_kernel_size, trans_num_layers, trans_scale_init, initial_temp, add_scalable_noise_to_transforms)
|
||||
selection_breadth = transforms_at_leaf if at_leaf else 2
|
||||
self.switch = Switch(transform, selection_breadth, initial_temp, pass_chain_forward=not at_leaf, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms)
|
||||
self.multiplexer = Constrictor(filters_count_list[self.depth], selection_breadth)
|
||||
|
||||
def forward(self, x, processing_trunk_chain):
|
||||
proc_out = processing_trunk_chain[self.depth]
|
||||
m = self.multiplexer(proc_out)
|
||||
return self.switch(x, m, processing_trunk_chain)
|
||||
|
||||
def set_temperature(self, temp):
|
||||
self.switch.set_temperature(temp)
|
||||
|
||||
|
||||
class NestedSwitchComputer(nn.Module):
|
||||
def __init__(self, transform_filters, switch_base_filters, num_switch_processing_layers, nesting_depth, transforms_at_leaf,
|
||||
trans_kernel_size, trans_num_layers, trans_scale_init, initial_temp=20, add_scalable_noise_to_transforms=False):
|
||||
super(NestedSwitchComputer, self).__init__()
|
||||
|
||||
processing_trunk = []
|
||||
filters = []
|
||||
current_filters = switch_base_filters
|
||||
for _ in range(nesting_depth):
|
||||
processing_trunk.append(Processor(current_filters, num_switch_processing_layers, reduce=True))
|
||||
current_filters = processing_trunk[-1].output_filter_count
|
||||
filters.append(current_filters)
|
||||
|
||||
self.multiplexer_init_conv = nn.Conv2d(transform_filters, switch_base_filters, kernel_size=7, padding=3)
|
||||
self.processing_trunk = nn.ModuleList(processing_trunk)
|
||||
self.switch = RecursiveSwitchedTransform(transform_filters, filters, nesting_depth-1, transforms_at_leaf, trans_kernel_size, trans_num_layers-1, trans_scale_init, initial_temp=initial_temp, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms)
|
||||
self.anneal = ConvBnLelu(transform_filters, transform_filters, kernel_size=1, bn=False)
|
||||
|
||||
def forward(self, x):
|
||||
trunk = []
|
||||
trunk_input = self.multiplexer_init_conv(x)
|
||||
for m in self.processing_trunk:
|
||||
trunk_input = m.forward(trunk_input)
|
||||
trunk.append(trunk_input)
|
||||
|
||||
x, att = self.switch.forward(x, trunk)
|
||||
return self.anneal(x), att
|
||||
|
||||
def set_temperature(self, temp):
|
||||
self.switch.set_temperature(temp)
|
||||
|
||||
|
||||
class NestedSwitchedGenerator(nn.Module):
|
||||
def __init__(self, switch_filters, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
|
||||
trans_layers, transformation_filters, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
|
||||
heightened_final_step=50000, upsample_factor=1, add_scalable_noise_to_transforms=False):
|
||||
super(NestedSwitchedGenerator, self).__init__()
|
||||
self.initial_conv = ConvBnLelu(3, transformation_filters, bn=False)
|
||||
self.final_conv = ConvBnLelu(transformation_filters, 3, bn=False)
|
||||
|
||||
switches = []
|
||||
for sw_reduce, sw_proc, trans_count, kernel, layers in zip(switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers):
|
||||
switches.append(NestedSwitchComputer(transform_filters=transformation_filters, switch_base_filters=switch_filters, num_switch_processing_layers=sw_proc,
|
||||
nesting_depth=sw_reduce, transforms_at_leaf=trans_count, trans_kernel_size=kernel, trans_num_layers=layers,
|
||||
trans_scale_init=.2/len(switch_reductions), initial_temp=initial_temp, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
|
||||
initialize_weights(switches, 1)
|
||||
self.switches = nn.ModuleList(switches)
|
||||
|
||||
self.transformation_counts = trans_counts
|
||||
self.init_temperature = initial_temp
|
||||
self.final_temperature_step = final_temperature_step
|
||||
self.heightened_temp_min = heightened_temp_min
|
||||
self.heightened_final_step = heightened_final_step
|
||||
self.attentions = None
|
||||
self.upsample_factor = upsample_factor
|
||||
|
||||
def forward(self, x):
|
||||
# This network is entirely a "repair" network and operates on full-resolution images. Upsample first if that
|
||||
# is called for, then repair.
|
||||
if self.upsample_factor > 1:
|
||||
x = F.interpolate(x, scale_factor=self.upsample_factor, mode="nearest")
|
||||
|
||||
x = self.initial_conv(x)
|
||||
|
||||
self.attentions = []
|
||||
for i, sw in enumerate(self.switches):
|
||||
sw_out, att = sw.forward(x)
|
||||
self.attentions.append(att)
|
||||
x = x + sw_out
|
||||
|
||||
x = self.final_conv(x)
|
||||
return x,
|
||||
|
||||
def set_temperature(self, temp):
|
||||
[sw.set_temperature(temp) for sw in self.switches]
|
||||
|
||||
def update_for_step(self, step, experiments_path='.'):
|
||||
if self.attentions:
|
||||
temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step))
|
||||
if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1:
|
||||
# Once the temperature passes (1) it enters an inverted curve to match the linear curve from above.
|
||||
# without this, the attention specificity "spikes" incredibly fast in the last few iterations.
|
||||
h_steps_total = self.heightened_final_step - self.final_temperature_step
|
||||
h_steps_current = min(step - self.final_temperature_step, h_steps_total)
|
||||
# The "gap" will represent the steps that need to be traveled as a linear function.
|
||||
h_gap = 1 / self.heightened_temp_min
|
||||
temp = h_gap * h_steps_current / h_steps_total
|
||||
# Invert temperature to represent reality on this side of the curve
|
||||
temp = 1 / temp
|
||||
self.set_temperature(temp)
|
||||
if step % 50 == 0:
|
||||
[save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,)) for i in range(len(self.switches))]
|
||||
|
||||
def get_debug_values(self, step):
|
||||
temp = self.switches[0].switch.switch.switch.temperature
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp}
|
||||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
|
@ -33,15 +33,15 @@ class ConvBnLelu(nn.Module):
|
|||
return x
|
||||
|
||||
|
||||
class ResidualBranch(nn.Module):
|
||||
def __init__(self, filters_in, filters_mid, filters_out, kernel_size, depth):
|
||||
class MultiConvBlock(nn.Module):
|
||||
def __init__(self, filters_in, filters_mid, filters_out, kernel_size, depth, scale_init=1):
|
||||
assert depth >= 2
|
||||
super(ResidualBranch, self).__init__()
|
||||
super(MultiConvBlock, self).__init__()
|
||||
self.noise_scale = nn.Parameter(torch.full((1,), fill_value=.01))
|
||||
self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_mid, kernel_size, bn=False)] +
|
||||
[ConvBnLelu(filters_mid, filters_mid, kernel_size, bn=False) for i in range(depth-2)] +
|
||||
[ConvBnLelu(filters_mid, filters_out, kernel_size, lelu=False, bn=False)])
|
||||
self.scale = nn.Parameter(torch.ones(1))
|
||||
self.scale = nn.Parameter(torch.full((1,), fill_value=scale_init))
|
||||
self.bias = nn.Parameter(torch.zeros(1))
|
||||
|
||||
def forward(self, x, noise=None):
|
||||
|
@ -198,9 +198,9 @@ class ConvBasisMultiplexer(nn.Module):
|
|||
return x
|
||||
|
||||
|
||||
class ConvBasisMultiplexerBase(nn.Module):
|
||||
class ConvBasisMultiplexerReducer(nn.Module):
|
||||
def __init__(self, input_channels, base_filters, growth, reductions, processing_depth):
|
||||
super(ConvBasisMultiplexerBase, self).__init__()
|
||||
super(ConvBasisMultiplexerReducer, self).__init__()
|
||||
self.filter_conv = ConvBnLelu(input_channels, base_filters)
|
||||
self.reduction_blocks = nn.Sequential(OrderedDict([('block%i:' % (i,), HalvingProcessingBlock(base_filters * 2 ** i)) for i in range(reductions)]))
|
||||
reduction_filters = base_filters * 2 ** reductions
|
||||
|
@ -240,7 +240,7 @@ class ConfigurableSwitchedResidualGenerator(nn.Module):
|
|||
super(ConfigurableSwitchedResidualGenerator, self).__init__()
|
||||
switches = []
|
||||
for filters, growth, sw_reduce, sw_proc, trans_count, kernel, layers, mid_filters in zip(switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers, trans_filters_mid):
|
||||
switches.append(SwitchComputer(3, filters, growth, functools.partial(ResidualBranch, 3, mid_filters, 3, kernel_size=kernel, depth=layers), trans_count, sw_reduce, sw_proc, initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
|
||||
switches.append(SwitchComputer(3, filters, growth, functools.partial(MultiConvBlock, 3, mid_filters, 3, kernel_size=kernel, depth=layers), trans_count, sw_reduce, sw_proc, initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
|
||||
initialize_weights(switches, 1)
|
||||
# Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image.
|
||||
initialize_weights([s.transforms for s in switches], .2 / len(switches))
|
||||
|
@ -310,7 +310,7 @@ class ConfigurableSwitchedResidualGenerator2(nn.Module):
|
|||
self.final_conv = ConvBnLelu(transformation_filters, 3, bn=False)
|
||||
for filters, growth, sw_reduce, sw_proc, trans_count, kernel, layers in zip(switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers):
|
||||
multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, filters, growth, sw_reduce, sw_proc, trans_count)
|
||||
switches.append(ConfigurableSwitchComputer(multiplx_fn, functools.partial(ResidualBranch, transformation_filters, transformation_filters, transformation_filters, kernel_size=kernel, depth=layers), trans_count, initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
|
||||
switches.append(ConfigurableSwitchComputer(multiplx_fn, functools.partial(MultiConvBlock, transformation_filters, transformation_filters, transformation_filters, kernel_size=kernel, depth=layers), trans_count, initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
|
||||
post_switch_proc.append(ConvBnLelu(transformation_filters, transformation_filters, bn=False))
|
||||
initialize_weights(switches, 1)
|
||||
# Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image.
|
||||
|
|
|
@ -6,7 +6,7 @@ import models.archs.DiscriminatorResnet_arch_passthrough as DiscriminatorResnet_
|
|||
import models.archs.FlatProcessorNetNew_arch as FlatProcessorNetNew_arch
|
||||
import models.archs.RRDBNet_arch as RRDBNet_arch
|
||||
import models.archs.HighToLowResNet as HighToLowResNet
|
||||
import models.archs.ResGen_arch as ResGen_arch
|
||||
import models.archs.NestedSwitchGenerator as ng
|
||||
import models.archs.feature_arch as feature_arch
|
||||
import models.archs.SwitchedResidualGenerator_arch as SwitchedGen_arch
|
||||
import functools
|
||||
|
@ -80,6 +80,15 @@ def define_G(opt, net_key='network_G'):
|
|||
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
|
||||
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
|
||||
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
|
||||
elif which_model == "NestedSwitchGenerator":
|
||||
netG = ng.NestedSwitchedGenerator(switch_filters=opt_net['switch_filters'],
|
||||
switch_reductions=opt_net['switch_reductions'],
|
||||
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
|
||||
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
|
||||
transformation_filters=opt_net['transformation_filters'],
|
||||
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
|
||||
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
|
||||
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
|
||||
|
||||
# image corruption
|
||||
elif which_model == 'HighToLowResNet':
|
||||
|
|
Loading…
Reference in New Issue
Block a user