From ad3e7df0869c36d4f513458bea23eb46b00d1936 Mon Sep 17 00:00:00 2001
From: James Betker <jbetker@gmail.com>
Date: Sun, 16 Jan 2022 21:10:11 -0700
Subject: [PATCH] Split the fast random into its own new dataset

---
 codes/data/audio/fast_paired_dataset.py | 279 ++++++++++++++++++++++++
 1 file changed, 279 insertions(+)
 create mode 100644 codes/data/audio/fast_paired_dataset.py

diff --git a/codes/data/audio/fast_paired_dataset.py b/codes/data/audio/fast_paired_dataset.py
new file mode 100644
index 00000000..9d50d1c4
--- /dev/null
+++ b/codes/data/audio/fast_paired_dataset.py
@@ -0,0 +1,279 @@
+import os
+import os
+import random
+import sys
+
+import torch
+import torch.nn.functional as F
+import torch.utils.data
+import torchaudio
+from tqdm import tqdm
+
+from data.audio.unsupervised_audio_dataset import load_audio, load_similar_clips
+from models.tacotron2.taco_utils import load_filepaths_and_text
+from models.tacotron2.text import text_to_sequence, sequence_to_text
+from utils.util import opt_get
+
+
+def parse_libri(line, base_path, split="|"):
+    fpt = line.strip().split(split)
+    fpt[0] = os.path.join(base_path, fpt[0])
+    return fpt
+
+
+def parse_tsv(line, base_path):
+    fpt = line.strip().split('\t')
+    return os.path.join(base_path, f'{fpt[1]}'), fpt[0]
+
+
+def parse_tsv_aligned_codes(line, base_path):
+    fpt = line.strip().split('\t')
+    def convert_string_list_to_tensor(strlist):
+        if strlist.startswith('['):
+            strlist = strlist[1:]
+        if strlist.endswith(']'):
+            strlist = strlist[:-1]
+        as_ints = [int(s) for s in strlist.split(', ')]
+        return torch.tensor(as_ints)
+    return os.path.join(base_path, f'{fpt[1]}'), fpt[0], convert_string_list_to_tensor(fpt[2])
+
+
+def parse_mozilla_cv(line, base_path):
+    components = line.strip().split('\t')
+    return os.path.join(base_path, f'clips/{components[1]}'), components[2]
+
+
+def parse_voxpopuli(line, base_path):
+    line = line.strip().split('\t')
+    file, raw_text, norm_text, speaker_id, split, gender = line
+    year = file[:4]
+    return os.path.join(base_path, year, f'{file}.ogg.wav'), raw_text
+
+
+class CharacterTokenizer:
+    def encode(self, txt):
+        return text_to_sequence(txt, ['english_cleaners'])
+
+    def decode(self, seq):
+        return sequence_to_text(seq)
+
+
+class TextWavLoader(torch.utils.data.Dataset):
+    def __init__(self, hparams):
+        self.paths = hparams['path']
+        if not isinstance(self.paths, list):
+            self.paths = [self.paths]
+        self.paths_size_bytes = [os.path.getsize(p) for p in self.paths]
+        self.total_size_bytes = sum(self.paths_size_bytes)
+
+        self.fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj')
+        if not isinstance(self.fetcher_mode, list):
+            self.fetcher_mode = [self.fetcher_mode]
+        assert len(self.paths) == len(self.fetcher_mode)
+
+        self.load_conditioning = opt_get(hparams, ['load_conditioning'], False)
+        self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 1)
+        self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100)
+        self.debug_failures = opt_get(hparams, ['debug_loading_failures'], False)
+        self.load_aligned_codes = opt_get(hparams, ['load_aligned_codes'], False)
+        self.aligned_codes_to_audio_ratio = opt_get(hparams, ['aligned_codes_ratio'], 443)
+        self.text_cleaners = hparams.text_cleaners
+        self.sample_rate = hparams.sample_rate
+        self.max_wav_len = opt_get(hparams, ['max_wav_length'], None)
+        if self.max_wav_len is not None:
+            self.max_aligned_codes = self.max_wav_len // self.aligned_codes_to_audio_ratio
+        self.max_text_len = opt_get(hparams, ['max_text_length'], None)
+        assert self.max_wav_len is not None and self.max_text_len is not None
+        self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], True)
+        if self.use_bpe_tokenizer:
+            from data.audio.voice_tokenizer import VoiceBpeTokenizer
+            self.tokenizer = VoiceBpeTokenizer(opt_get(hparams, ['tokenizer_vocab'], '../experiments/bpe_lowercase_asr_256.json'))
+        else:
+            self.tokenizer = CharacterTokenizer()
+        self.skipped_items = 0  # records how many items are skipped when accessing an index.
+
+    def get_wav_text_pair(self, audiopath_and_text):
+        # separate filename and text
+        audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
+        text_seq = self.get_text(text)
+        wav = load_audio(audiopath, self.sample_rate)
+        return (text_seq, wav, text, audiopath_and_text[0])
+
+    def get_text(self, text):
+        tokens = self.tokenizer.encode(text)
+        tokens = torch.IntTensor(tokens)
+        if self.use_bpe_tokenizer:
+            # Assert if any UNK,start tokens encountered.
+            assert not torch.any(tokens == 1)
+        # The stop token should always be sacred.
+        assert not torch.any(tokens == 0)
+        return tokens
+
+    def load_random_line(self, depth=0):
+        assert depth < 10
+
+        rand_offset = random.randint(0, self.total_size_bytes)
+        for i in range(len(self.paths)):
+            if rand_offset < self.paths_size_bytes[i]:
+                break
+            else:
+                rand_offset -= self.paths_size_bytes[i]
+        path = self.paths[i]
+        fm = self.fetcher_mode[i]
+        with open(path, 'r', encoding='utf-8') as f:
+            f.seek(rand_offset)
+            # Read the rest of the line we seeked to, then the line after that.
+            try:  # This can fail when seeking to a UTF-8 escape byte.
+                f.readline()
+            except:
+                return self.load_random_line(depth=depth + 1)  # On failure, just recurse and try again.
+            l2 = f.readline()
+
+        if l2:
+            try:
+                base_path = os.path.dirname(path)
+                if fm == 'lj' or fm == 'libritts':
+                    return parse_libri(l2, base_path)
+                elif fm == 'tsv':
+                    return parse_tsv_aligned_codes(l2, base_path) if self.load_aligned_codes else parse_tsv(l2, base_path)
+                elif fm == 'mozilla_cv':
+                    assert not self.load_conditioning  # Conditioning inputs are incompatible with mozilla_cv
+                    return parse_mozilla_cv(l2, base_path)
+                elif fm == 'voxpopuli':
+                    assert not self.load_conditioning  # Conditioning inputs are incompatible with voxpopuli
+                    return parse_voxpopuli(l2, base_path)
+                else:
+                    raise NotImplementedError()
+            except:
+                print(f"error parsing random offset: {sys.exc_info()}")
+        return self.load_random_line(depth=depth+1)  # On failure, just recurse and try again.
+
+
+    def __getitem__(self, index):
+        self.skipped_items += 1
+        apt = self.load_random_line()
+        try:
+            tseq, wav, text, path = self.get_wav_text_pair(apt)
+            if text is None or len(text.strip()) == 0:
+                raise ValueError
+            cond, cond_is_self = load_similar_clips(apt[0], self.conditioning_length, self.sample_rate,
+                                      n=self.conditioning_candidates) if self.load_conditioning else (None, False)
+        except:
+            if self.skipped_items > 100:
+                raise  # Rethrow if we have nested too far.
+            if self.debug_failures:
+                print(f"error loading {apt[0]} {sys.exc_info()}")
+            return self[(index+1) % len(self)]
+
+        if self.load_aligned_codes:
+            aligned_codes = apt[2]
+
+        actually_skipped_items = self.skipped_items
+        self.skipped_items = 0
+        if wav is None or \
+            (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \
+            (self.max_text_len is not None and tseq.shape[0] > self.max_text_len):
+            # Basically, this audio file is nonexistent or too long to be supported by the dataset.
+            # It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result.
+            if self.debug_failures:
+                print(f"error loading {path}: ranges are out of bounds; {wav.shape[-1]}, {tseq.shape[0]}")
+            rv = random.randint(0,len(self)-1)
+            return self[rv]
+        orig_output = wav.shape[-1]
+        orig_text_len = tseq.shape[0]
+        if wav.shape[-1] != self.max_wav_len:
+            wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
+            if self.load_aligned_codes:
+                # These codes are aligned to audio inputs, so make sure to pad them as well.
+                aligned_codes = F.pad(aligned_codes, (0, self.max_aligned_codes-aligned_codes.shape[0]))
+        if tseq.shape[0] != self.max_text_len:
+            tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
+        res = {
+            'real_text': text,
+            'padded_text': tseq,
+            'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
+            'wav': wav,
+            'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
+            'filenames': path,
+            'skipped_items': actually_skipped_items,
+        }
+        if self.load_conditioning:
+            res['conditioning'] = cond
+            res['conditioning_contains_self'] = cond_is_self
+        if self.load_aligned_codes:
+            res['aligned_codes'] = aligned_codes
+        return res
+
+    def __len__(self):
+        return self.total_size_bytes // 1000  # 1000 cuts down a TSV file to the actual length pretty well, but doesn't work with the other formats.
+
+
+class PairedVoiceDebugger:
+    def __init__(self):
+        self.total_items = 0
+        self.loaded_items = 0
+        self.self_conditioning_items = 0
+
+    def get_state(self):
+        return {'total_items': self.total_items,
+                'loaded_items': self.loaded_items,
+                'self_conditioning_items': self.self_conditioning_items}
+
+    def load_state(self, state):
+        if isinstance(state, dict):
+            self.total_items = opt_get(state, ['total_items'], 0)
+            self.loaded_items = opt_get(state, ['loaded_items'], 0)
+            self.self_conditioning_items = opt_get(state, ['self_conditioning_items'], 0)
+
+    def update(self, batch):
+        self.total_items += batch['wav'].shape[0]
+        self.loaded_items += batch['skipped_items'].sum().item()
+        if 'conditioning' in batch.keys():
+            self.self_conditioning_items += batch['conditioning_contains_self'].sum().item()
+
+    def get_debugging_map(self):
+        return {
+            'total_samples_loaded': self.total_items,
+            'percent_skipped_samples': (self.loaded_items - self.total_items) / self.loaded_items,
+            'percent_conditioning_is_self': self.self_conditioning_items / self.loaded_items,
+        }
+
+
+if __name__ == '__main__':
+    batch_sz = 16
+    params = {
+        'mode': 'paired_voice_audio',
+        #'path': ['Y:\\clips\\books1\\transcribed-w2v.tsv'],
+        'path': ['Y:\\bigasr_dataset\\mozcv\\en\\train.tsv'],
+        'fetcher_mode': ['mozilla_cv'],
+        'phase': 'train',
+        'n_workers': 0,
+        'batch_size': batch_sz,
+        'max_wav_length': 255995,
+        'max_text_length': 200,
+        'sample_rate': 22050,
+        'load_conditioning': False,
+        'num_conditioning_candidates': 2,
+        'conditioning_length': 44000,
+        'use_bpe_tokenizer': True,
+        'load_aligned_codes': False,
+    }
+    from data import create_dataset, create_dataloader
+
+    def save(b, i, ib, key, c=None):
+        if c is not None:
+            torchaudio.save(f'{i}_clip_{ib}_{key}_{c}.wav', b[key][ib][c], 22050)
+        else:
+            torchaudio.save(f'{i}_clip_{ib}_{key}.wav', b[key][ib], 22050)
+
+    ds, c = create_dataset(params, return_collate=True)
+    dl = create_dataloader(ds, params, collate_fn=c)
+    i = 0
+    m = None
+    for i, b in tqdm(enumerate(dl)):
+        for ib in range(batch_sz):
+            print(f'{i} {ib} {b["real_text"][ib]}')
+            #save(b, i, ib, 'wav')
+        #if i > 5:
+        #    break
+