From ad3e7df0869c36d4f513458bea23eb46b00d1936 Mon Sep 17 00:00:00 2001 From: James Betker <jbetker@gmail.com> Date: Sun, 16 Jan 2022 21:10:11 -0700 Subject: [PATCH] Split the fast random into its own new dataset --- codes/data/audio/fast_paired_dataset.py | 279 ++++++++++++++++++++++++ 1 file changed, 279 insertions(+) create mode 100644 codes/data/audio/fast_paired_dataset.py diff --git a/codes/data/audio/fast_paired_dataset.py b/codes/data/audio/fast_paired_dataset.py new file mode 100644 index 00000000..9d50d1c4 --- /dev/null +++ b/codes/data/audio/fast_paired_dataset.py @@ -0,0 +1,279 @@ +import os +import os +import random +import sys + +import torch +import torch.nn.functional as F +import torch.utils.data +import torchaudio +from tqdm import tqdm + +from data.audio.unsupervised_audio_dataset import load_audio, load_similar_clips +from models.tacotron2.taco_utils import load_filepaths_and_text +from models.tacotron2.text import text_to_sequence, sequence_to_text +from utils.util import opt_get + + +def parse_libri(line, base_path, split="|"): + fpt = line.strip().split(split) + fpt[0] = os.path.join(base_path, fpt[0]) + return fpt + + +def parse_tsv(line, base_path): + fpt = line.strip().split('\t') + return os.path.join(base_path, f'{fpt[1]}'), fpt[0] + + +def parse_tsv_aligned_codes(line, base_path): + fpt = line.strip().split('\t') + def convert_string_list_to_tensor(strlist): + if strlist.startswith('['): + strlist = strlist[1:] + if strlist.endswith(']'): + strlist = strlist[:-1] + as_ints = [int(s) for s in strlist.split(', ')] + return torch.tensor(as_ints) + return os.path.join(base_path, f'{fpt[1]}'), fpt[0], convert_string_list_to_tensor(fpt[2]) + + +def parse_mozilla_cv(line, base_path): + components = line.strip().split('\t') + return os.path.join(base_path, f'clips/{components[1]}'), components[2] + + +def parse_voxpopuli(line, base_path): + line = line.strip().split('\t') + file, raw_text, norm_text, speaker_id, split, gender = line + year = file[:4] + return os.path.join(base_path, year, f'{file}.ogg.wav'), raw_text + + +class CharacterTokenizer: + def encode(self, txt): + return text_to_sequence(txt, ['english_cleaners']) + + def decode(self, seq): + return sequence_to_text(seq) + + +class TextWavLoader(torch.utils.data.Dataset): + def __init__(self, hparams): + self.paths = hparams['path'] + if not isinstance(self.paths, list): + self.paths = [self.paths] + self.paths_size_bytes = [os.path.getsize(p) for p in self.paths] + self.total_size_bytes = sum(self.paths_size_bytes) + + self.fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj') + if not isinstance(self.fetcher_mode, list): + self.fetcher_mode = [self.fetcher_mode] + assert len(self.paths) == len(self.fetcher_mode) + + self.load_conditioning = opt_get(hparams, ['load_conditioning'], False) + self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 1) + self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100) + self.debug_failures = opt_get(hparams, ['debug_loading_failures'], False) + self.load_aligned_codes = opt_get(hparams, ['load_aligned_codes'], False) + self.aligned_codes_to_audio_ratio = opt_get(hparams, ['aligned_codes_ratio'], 443) + self.text_cleaners = hparams.text_cleaners + self.sample_rate = hparams.sample_rate + self.max_wav_len = opt_get(hparams, ['max_wav_length'], None) + if self.max_wav_len is not None: + self.max_aligned_codes = self.max_wav_len // self.aligned_codes_to_audio_ratio + self.max_text_len = opt_get(hparams, ['max_text_length'], None) + assert self.max_wav_len is not None and self.max_text_len is not None + self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], True) + if self.use_bpe_tokenizer: + from data.audio.voice_tokenizer import VoiceBpeTokenizer + self.tokenizer = VoiceBpeTokenizer(opt_get(hparams, ['tokenizer_vocab'], '../experiments/bpe_lowercase_asr_256.json')) + else: + self.tokenizer = CharacterTokenizer() + self.skipped_items = 0 # records how many items are skipped when accessing an index. + + def get_wav_text_pair(self, audiopath_and_text): + # separate filename and text + audiopath, text = audiopath_and_text[0], audiopath_and_text[1] + text_seq = self.get_text(text) + wav = load_audio(audiopath, self.sample_rate) + return (text_seq, wav, text, audiopath_and_text[0]) + + def get_text(self, text): + tokens = self.tokenizer.encode(text) + tokens = torch.IntTensor(tokens) + if self.use_bpe_tokenizer: + # Assert if any UNK,start tokens encountered. + assert not torch.any(tokens == 1) + # The stop token should always be sacred. + assert not torch.any(tokens == 0) + return tokens + + def load_random_line(self, depth=0): + assert depth < 10 + + rand_offset = random.randint(0, self.total_size_bytes) + for i in range(len(self.paths)): + if rand_offset < self.paths_size_bytes[i]: + break + else: + rand_offset -= self.paths_size_bytes[i] + path = self.paths[i] + fm = self.fetcher_mode[i] + with open(path, 'r', encoding='utf-8') as f: + f.seek(rand_offset) + # Read the rest of the line we seeked to, then the line after that. + try: # This can fail when seeking to a UTF-8 escape byte. + f.readline() + except: + return self.load_random_line(depth=depth + 1) # On failure, just recurse and try again. + l2 = f.readline() + + if l2: + try: + base_path = os.path.dirname(path) + if fm == 'lj' or fm == 'libritts': + return parse_libri(l2, base_path) + elif fm == 'tsv': + return parse_tsv_aligned_codes(l2, base_path) if self.load_aligned_codes else parse_tsv(l2, base_path) + elif fm == 'mozilla_cv': + assert not self.load_conditioning # Conditioning inputs are incompatible with mozilla_cv + return parse_mozilla_cv(l2, base_path) + elif fm == 'voxpopuli': + assert not self.load_conditioning # Conditioning inputs are incompatible with voxpopuli + return parse_voxpopuli(l2, base_path) + else: + raise NotImplementedError() + except: + print(f"error parsing random offset: {sys.exc_info()}") + return self.load_random_line(depth=depth+1) # On failure, just recurse and try again. + + + def __getitem__(self, index): + self.skipped_items += 1 + apt = self.load_random_line() + try: + tseq, wav, text, path = self.get_wav_text_pair(apt) + if text is None or len(text.strip()) == 0: + raise ValueError + cond, cond_is_self = load_similar_clips(apt[0], self.conditioning_length, self.sample_rate, + n=self.conditioning_candidates) if self.load_conditioning else (None, False) + except: + if self.skipped_items > 100: + raise # Rethrow if we have nested too far. + if self.debug_failures: + print(f"error loading {apt[0]} {sys.exc_info()}") + return self[(index+1) % len(self)] + + if self.load_aligned_codes: + aligned_codes = apt[2] + + actually_skipped_items = self.skipped_items + self.skipped_items = 0 + if wav is None or \ + (self.max_wav_len is not None and wav.shape[-1] > self.max_wav_len) or \ + (self.max_text_len is not None and tseq.shape[0] > self.max_text_len): + # Basically, this audio file is nonexistent or too long to be supported by the dataset. + # It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result. + if self.debug_failures: + print(f"error loading {path}: ranges are out of bounds; {wav.shape[-1]}, {tseq.shape[0]}") + rv = random.randint(0,len(self)-1) + return self[rv] + orig_output = wav.shape[-1] + orig_text_len = tseq.shape[0] + if wav.shape[-1] != self.max_wav_len: + wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1])) + if self.load_aligned_codes: + # These codes are aligned to audio inputs, so make sure to pad them as well. + aligned_codes = F.pad(aligned_codes, (0, self.max_aligned_codes-aligned_codes.shape[0])) + if tseq.shape[0] != self.max_text_len: + tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0])) + res = { + 'real_text': text, + 'padded_text': tseq, + 'text_lengths': torch.tensor(orig_text_len, dtype=torch.long), + 'wav': wav, + 'wav_lengths': torch.tensor(orig_output, dtype=torch.long), + 'filenames': path, + 'skipped_items': actually_skipped_items, + } + if self.load_conditioning: + res['conditioning'] = cond + res['conditioning_contains_self'] = cond_is_self + if self.load_aligned_codes: + res['aligned_codes'] = aligned_codes + return res + + def __len__(self): + return self.total_size_bytes // 1000 # 1000 cuts down a TSV file to the actual length pretty well, but doesn't work with the other formats. + + +class PairedVoiceDebugger: + def __init__(self): + self.total_items = 0 + self.loaded_items = 0 + self.self_conditioning_items = 0 + + def get_state(self): + return {'total_items': self.total_items, + 'loaded_items': self.loaded_items, + 'self_conditioning_items': self.self_conditioning_items} + + def load_state(self, state): + if isinstance(state, dict): + self.total_items = opt_get(state, ['total_items'], 0) + self.loaded_items = opt_get(state, ['loaded_items'], 0) + self.self_conditioning_items = opt_get(state, ['self_conditioning_items'], 0) + + def update(self, batch): + self.total_items += batch['wav'].shape[0] + self.loaded_items += batch['skipped_items'].sum().item() + if 'conditioning' in batch.keys(): + self.self_conditioning_items += batch['conditioning_contains_self'].sum().item() + + def get_debugging_map(self): + return { + 'total_samples_loaded': self.total_items, + 'percent_skipped_samples': (self.loaded_items - self.total_items) / self.loaded_items, + 'percent_conditioning_is_self': self.self_conditioning_items / self.loaded_items, + } + + +if __name__ == '__main__': + batch_sz = 16 + params = { + 'mode': 'paired_voice_audio', + #'path': ['Y:\\clips\\books1\\transcribed-w2v.tsv'], + 'path': ['Y:\\bigasr_dataset\\mozcv\\en\\train.tsv'], + 'fetcher_mode': ['mozilla_cv'], + 'phase': 'train', + 'n_workers': 0, + 'batch_size': batch_sz, + 'max_wav_length': 255995, + 'max_text_length': 200, + 'sample_rate': 22050, + 'load_conditioning': False, + 'num_conditioning_candidates': 2, + 'conditioning_length': 44000, + 'use_bpe_tokenizer': True, + 'load_aligned_codes': False, + } + from data import create_dataset, create_dataloader + + def save(b, i, ib, key, c=None): + if c is not None: + torchaudio.save(f'{i}_clip_{ib}_{key}_{c}.wav', b[key][ib][c], 22050) + else: + torchaudio.save(f'{i}_clip_{ib}_{key}.wav', b[key][ib], 22050) + + ds, c = create_dataset(params, return_collate=True) + dl = create_dataloader(ds, params, collate_fn=c) + i = 0 + m = None + for i, b in tqdm(enumerate(dl)): + for ib in range(batch_sz): + print(f'{i} {ib} {b["real_text"][ib]}') + #save(b, i, ib, 'wav') + #if i > 5: + # break +