From bf08519d7126ea325f1ac1a098ead0026156c7e2 Mon Sep 17 00:00:00 2001 From: James Betker Date: Thu, 17 Mar 2022 10:53:31 -0600 Subject: [PATCH] fixes --- .gitmodules | 3 - .../classifiers/cifar_resnet_branched.py | 280 ------------------ codes/models/image_generation/RRDBNet_arch.py | 1 - codes/models/vqvae/gumbel_quantizer.py | 2 - codes/train.py | 2 +- codes/trainer/losses.py | 6 - 6 files changed, 1 insertion(+), 293 deletions(-) delete mode 100644 codes/models/classifiers/cifar_resnet_branched.py diff --git a/.gitmodules b/.gitmodules index 11e7e233..13cb195e 100644 --- a/.gitmodules +++ b/.gitmodules @@ -1,9 +1,6 @@ [submodule "flownet2"] path = flownet2 url = https://github.com/NVIDIA/flownet2-pytorch.git -[submodule "codes/models/switched_conv"] - path = codes/models/switched_conv - url = https://github.com/neonbjb/SwitchedConvolutions.git [submodule "codes/models/flownet2"] path = codes/models/flownet2 url = https://github.com/neonbjb/flownet2-pytorch.git diff --git a/codes/models/classifiers/cifar_resnet_branched.py b/codes/models/classifiers/cifar_resnet_branched.py deleted file mode 100644 index bc114bdd..00000000 --- a/codes/models/classifiers/cifar_resnet_branched.py +++ /dev/null @@ -1,280 +0,0 @@ -"""resnet in pytorch - - - -[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun. - - Deep Residual Learning for Image Recognition - https://arxiv.org/abs/1512.03385v1 -""" - -import torch -import torch.nn as nn -import torch.distributed as dist - -from models.switched_conv.switched_conv_hard_routing import SwitchNorm, RouteTop1 -from trainer.networks import register_model - - -class BasicBlock(nn.Module): - """Basic Block for resnet 18 and resnet 34 - - """ - - #BasicBlock and BottleNeck block - #have different output size - #we use class attribute expansion - #to distinct - expansion = 1 - - def __init__(self, in_channels, out_channels, stride=1): - super().__init__() - - #residual function - self.residual_function = nn.Sequential( - nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False), - nn.BatchNorm2d(out_channels), - nn.ReLU(inplace=True), - nn.Conv2d(out_channels, out_channels * BasicBlock.expansion, kernel_size=3, padding=1, bias=False), - nn.BatchNorm2d(out_channels * BasicBlock.expansion) - ) - - #shortcut - self.shortcut = nn.Sequential() - - #the shortcut output dimension is not the same with residual function - #use 1*1 convolution to match the dimension - if stride != 1 or in_channels != BasicBlock.expansion * out_channels: - self.shortcut = nn.Sequential( - nn.Conv2d(in_channels, out_channels * BasicBlock.expansion, kernel_size=1, stride=stride, bias=False), - nn.BatchNorm2d(out_channels * BasicBlock.expansion) - ) - - def forward(self, x): - return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x)) - -class BottleNeck(nn.Module): - """Residual block for resnet over 50 layers - - """ - expansion = 4 - def __init__(self, in_channels, out_channels, stride=1): - super().__init__() - self.residual_function = nn.Sequential( - nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False), - nn.BatchNorm2d(out_channels), - nn.ReLU(inplace=True), - nn.Conv2d(out_channels, out_channels, stride=stride, kernel_size=3, padding=1, bias=False), - nn.BatchNorm2d(out_channels), - nn.ReLU(inplace=True), - nn.Conv2d(out_channels, out_channels * BottleNeck.expansion, kernel_size=1, bias=False), - nn.BatchNorm2d(out_channels * BottleNeck.expansion), - ) - - self.shortcut = nn.Sequential() - - if stride != 1 or in_channels != out_channels * BottleNeck.expansion: - self.shortcut = nn.Sequential( - nn.Conv2d(in_channels, out_channels * BottleNeck.expansion, stride=stride, kernel_size=1, bias=False), - nn.BatchNorm2d(out_channels * BottleNeck.expansion) - ) - - def forward(self, x): - return nn.ReLU(inplace=True)(self.residual_function(x) + self.shortcut(x)) - - -class ResNetTail(nn.Module): - def __init__(self, block, num_block, num_classes=100): - super().__init__() - - self.in_channels = 64 - self.conv4_x = self._make_layer(block, 128, num_block[2], 2) - self.conv5_x = self._make_layer(block, 256, num_block[3], 2) - self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) - self.fc = nn.Linear(256 * block.expansion, num_classes) - - def _make_layer(self, block, out_channels, num_blocks, stride): - strides = [stride] + [1] * (num_blocks - 1) - layers = [] - for stride in strides: - layers.append(block(self.in_channels, out_channels, stride)) - self.in_channels = out_channels * block.expansion - return nn.Sequential(*layers) - - def forward(self, x): - output = self.conv4_x(x) - output = self.conv5_x(output) - output = self.avg_pool(output) - output = output.view(output.size(0), -1) - output = self.fc(output) - - return output - - -class DropoutNorm(SwitchNorm): - def __init__(self, group_size, dropout_rate, accumulator_size=256, eps=1e-6): - super().__init__(group_size, accumulator_size) - self.accumulator_desired_size = accumulator_size - self.group_size = group_size - self.dropout_rate = dropout_rate - self.register_buffer("accumulator_index", torch.zeros(1, dtype=torch.long, device='cpu')) - self.register_buffer("accumulator_filled", torch.zeros(1, dtype=torch.long, device='cpu')) - self.register_buffer("accumulator", torch.zeros(accumulator_size, group_size)) - self.eps = eps - - def add_norm_to_buffer(self, x): - flatten_dims = [0] + [k+2 for k in range(len(x.shape)-2)] - flat = x.mean(dim=flatten_dims) - - self.accumulator[self.accumulator_index] = flat.detach().clone() - self.accumulator_index += 1 - if self.accumulator_index >= self.accumulator_desired_size: - self.accumulator_index *= 0 - if self.accumulator_filled <= 0: - self.accumulator_filled += 1 - - # Input into forward is a switching tensor of shape (batch,groups,) - def forward(self, x: torch.Tensor): - assert len(x.shape) >= 2 - - if not self.training: - return x - - # Only accumulate the "winning" switch slots. - mask = torch.nn.functional.one_hot(x.argmax(dim=1), num_classes=x.shape[1]) - if len(x.shape) > 2: - mask = mask.permute(0, 3, 1, 2) # TODO: Make this more extensible. - xtop = torch.ones_like(x) - xtop[mask != 1] = 0 - - # Push the accumulator to the right device on the first iteration. - if self.accumulator.device != xtop.device: - self.accumulator = self.accumulator.to(xtop.device) - self.add_norm_to_buffer(xtop) - - # Reduce across all distributed entities, if needed - if dist.is_available() and dist.is_initialized(): - dist.all_reduce(self.accumulator, op=dist.ReduceOp.SUM) - self.accumulator /= dist.get_world_size() - - # Compute the dropout probabilities. This module is a no-op before the accumulator is initialized. - if self.accumulator_filled > 0: - with torch.no_grad(): - probs = torch.mean(self.accumulator, dim=0) * self.dropout_rate - bs, br = x.shape[:2] - drop = torch.rand((bs, br), device=x.device) > probs.unsqueeze(0) - # Ensure that there is always at least one switch left un-dropped out - fix_blank = (drop.sum(dim=1, keepdim=True) == 0).repeat(1, br) - drop = drop.logical_or(fix_blank) - x_dropped = drop * x + ~drop * -1e20 - x = x_dropped - - return x - - -class HardRoutingGate(nn.Module): - def __init__(self, breadth, fade_steps=10000, dropout_rate=.8): - super().__init__() - self.norm = DropoutNorm(breadth, dropout_rate, accumulator_size=128) - self.fade_steps = fade_steps - self.register_buffer("last_step", torch.zeros(1, dtype=torch.long, device='cpu')) - - def forward(self, x): - if self.last_step < self.fade_steps: - x = torch.randn_like(x) * (self.fade_steps - self.last_step) / self.fade_steps + \ - x * self.last_step / self.fade_steps - self.last_step = self.last_step + 1 - soft = nn.functional.softmax(self.norm(x), dim=1) - return RouteTop1.apply(soft) - - -class ResNet(nn.Module): - - def __init__(self, block, num_block, num_classes=100, num_tails=8): - super().__init__() - self.in_channels = 32 - self.conv1 = nn.Sequential( - nn.Conv2d(3, 32, kernel_size=3, padding=1, bias=False), - nn.BatchNorm2d(32), - nn.ReLU(inplace=True)) - - self.conv2_x = self._make_layer(block, 32, num_block[0], 1) - self.conv3_x = self._make_layer(block, 64, num_block[1], 2) - self.tails = nn.ModuleList([ResNetTail(block, num_block, 256) for _ in range(num_tails)]) - self.selector = ResNetTail(block, num_block, num_tails) - self.selector_gate = nn.Linear(256, 1) - self.gate = HardRoutingGate(num_tails, dropout_rate=2) - self.final_linear = nn.Linear(256, num_classes) - - def _make_layer(self, block, out_channels, num_blocks, stride): - strides = [stride] + [1] * (num_blocks - 1) - layers = [] - for stride in strides: - layers.append(block(self.in_channels, out_channels, stride)) - self.in_channels = out_channels * block.expansion - return nn.Sequential(*layers) - - def get_debug_values(self, step, __): - logs = {'histogram_switch_usage': self.latest_masks} - return logs - - def forward(self, x, coarse_label, return_selector=False): - output = self.conv1(x) - output = self.conv2_x(output) - output = self.conv3_x(output) - - keys = [] - for t in self.tails: - keys.append(t(output)) - keys = torch.stack(keys, dim=1) - - query = self.selector(output).unsqueeze(2) - selector = self.selector_gate(query * keys).squeeze(-1) - selector = self.gate(selector) - self.latest_masks = (selector.max(dim=1, keepdim=True)[0].repeat(1,8) == selector).float().argmax(dim=1) - values = self.final_linear(selector.unsqueeze(-1) * keys) - - if return_selector: - return values.sum(dim=1), selector - else: - return values.sum(dim=1) - - #bs = output.shape[0] - #return (tailouts[coarse_label] * torch.eye(n=bs, device=x.device).view(bs,bs,1)).sum(dim=1) - -@register_model -def register_cifar_resnet18_branched(opt_net, opt): - """ return a ResNet 18 object - """ - return ResNet(BasicBlock, [2, 2, 2, 2]) - -def resnet34(): - """ return a ResNet 34 object - """ - return ResNet(BasicBlock, [3, 4, 6, 3]) - -def resnet50(): - """ return a ResNet 50 object - """ - return ResNet(BottleNeck, [3, 4, 6, 3]) - -def resnet101(): - """ return a ResNet 101 object - """ - return ResNet(BottleNeck, [3, 4, 23, 3]) - -def resnet152(): - """ return a ResNet 152 object - """ - return ResNet(BottleNeck, [3, 8, 36, 3]) - - -if __name__ == '__main__': - model = ResNet(BasicBlock, [2,2,2,2]) - for j in range(10): - v = model(torch.randn(256,3,32,32), None) - print(model.get_debug_values(0, None)) - print(v.shape) - l = nn.MSELoss()(v, torch.randn_like(v)) - l.backward() - diff --git a/codes/models/image_generation/RRDBNet_arch.py b/codes/models/image_generation/RRDBNet_arch.py index d8b05259..1e5335c6 100644 --- a/codes/models/image_generation/RRDBNet_arch.py +++ b/codes/models/image_generation/RRDBNet_arch.py @@ -11,7 +11,6 @@ from torchvision.models.resnet import Bottleneck from models.arch_util import make_layer, default_init_weights, ConvGnSilu, ConvGnLelu from trainer.networks import register_model from utils.util import checkpoint, sequential_checkpoint, opt_get -from models.switched_conv.switched_conv import SwitchedConv class ResidualDenseBlock(nn.Module): diff --git a/codes/models/vqvae/gumbel_quantizer.py b/codes/models/vqvae/gumbel_quantizer.py index ae90316c..2d71ec7f 100644 --- a/codes/models/vqvae/gumbel_quantizer.py +++ b/codes/models/vqvae/gumbel_quantizer.py @@ -3,7 +3,6 @@ import torch.nn as nn import torch.nn.functional as F from torch import einsum -from models.switched_conv.switched_conv_hard_routing import SwitchNorm from utils.weight_scheduler import LinearDecayWeightScheduler @@ -48,7 +47,6 @@ class GumbelQuantizer(nn.Module): return sampled.permute(0,2,1), 0, codes if __name__ == '__main__': - from models.diffusion.diffusion_dvae import DiscreteDecoder j = torch.randn(8,40,1024) m = GumbelQuantizer(1024, 1024, 4096) m2 = DiscreteDecoder(1024, (512, 256), 2) diff --git a/codes/train.py b/codes/train.py index 3b4f5f42..6418df72 100644 --- a/codes/train.py +++ b/codes/train.py @@ -318,7 +318,7 @@ class Trainer: if __name__ == '__main__': parser = argparse.ArgumentParser() - parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_diffusion_tts9_mel.yml') + parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_diffusion_tts9_mel_flat.yml') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') args = parser.parse_args() opt = option.parse(args.opt, is_train=True) diff --git a/codes/trainer/losses.py b/codes/trainer/losses.py index fadc0bd0..2a081c47 100644 --- a/codes/trainer/losses.py +++ b/codes/trainer/losses.py @@ -52,12 +52,6 @@ def create_loss(opt_loss, env): return RecurrentLoss(opt_loss, env) elif type == 'for_element': return ForElementLoss(opt_loss, env) - elif type == 'mixture_of_experts': - from models.switched_conv.mixture_of_experts import MixtureOfExpertsLoss - return MixtureOfExpertsLoss(opt_loss, env) - elif type == 'switch_transformer_balance': - from models.switched_conv.mixture_of_experts import SwitchTransformersLoadBalancingLoss - return SwitchTransformersLoadBalancingLoss(opt_loss, env) elif type == 'nv_tacotron2_loss': from models.audio.tts.tacotron2 import Tacotron2Loss return Tacotron2Loss(opt_loss, env)