forked from mrq/DL-Art-School
import performer repo
This commit is contained in:
parent
7de3874f15
commit
c075fe72e2
3
codes/models/lucidrains/performer/__init__.py
Normal file
3
codes/models/lucidrains/performer/__init__.py
Normal file
|
@ -0,0 +1,3 @@
|
|||
from performer_pytorch import PerformerLM, Performer, FastAttention, SelfAttention, CrossAttention, ProjectionUpdater
|
||||
from autoregressive_wrapper import AutoregressiveWrapper
|
||||
from performer_enc_dec import PerformerEncDec
|
107
codes/models/lucidrains/performer/autoregressive_wrapper.py
Normal file
107
codes/models/lucidrains/performer/autoregressive_wrapper.py
Normal file
|
@ -0,0 +1,107 @@
|
|||
from functools import partial
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def top_p(logits, thres = 0.9):
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
|
||||
sorted_indices_to_remove = cum_probs > (1 - thres)
|
||||
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
|
||||
sorted_indices_to_remove[:, 0] = 0
|
||||
|
||||
sorted_logits[sorted_indices_to_remove] = float('-inf')
|
||||
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
|
||||
|
||||
def top_k(logits, thres = 0.9):
|
||||
k = int((1 - thres) * logits.shape[-1])
|
||||
val, ind = torch.topk(logits, k)
|
||||
probs = torch.full_like(logits, float('-inf'))
|
||||
probs.scatter_(1, ind, val)
|
||||
return probs
|
||||
|
||||
def repetition_penalty_fn(logits, ctx, theta=1.2):
|
||||
w = torch.ones(logits.shape[-1], dtype=torch.float, device=logits.device)
|
||||
for i in torch.unique(ctx):
|
||||
w[i] = theta
|
||||
return logits/w
|
||||
|
||||
class AutoregressiveWrapper(nn.Module):
|
||||
def __init__(self, net, ignore_index = 0, pad_value = 0):
|
||||
super().__init__()
|
||||
self.pad_value = pad_value
|
||||
self.ignore_index = ignore_index
|
||||
|
||||
self.net = net
|
||||
self.max_seq_len = net.max_seq_len
|
||||
|
||||
@torch.no_grad()
|
||||
def generate(self, start_tokens, seq_len, eos_token = None, temperature = 1., filter_logits_fn = top_k, filter_thres = 0.9, repetition_penalty=1.0, repetition_penalty_ctx=32, **kwargs):
|
||||
was_training = self.net.training
|
||||
num_dims = len(start_tokens.shape)
|
||||
|
||||
if num_dims == 1:
|
||||
start_tokens = start_tokens[None, :]
|
||||
|
||||
b, t = start_tokens.shape
|
||||
|
||||
self.net.eval()
|
||||
out = start_tokens
|
||||
input_mask = kwargs.pop('mask', None)
|
||||
|
||||
if input_mask is None:
|
||||
input_mask = torch.full_like(out, True, dtype=torch.bool, device=out.device)
|
||||
|
||||
# in case of conditional generation, if enc_mask is not provided use the correct context_mask
|
||||
context_mask = kwargs.pop('context_mask', None)
|
||||
|
||||
if 'context' in kwargs and not exists(context_mask):
|
||||
context = kwargs['context']
|
||||
context_mask = torch.full(context.shape[:2], True, dtype=torch.bool, device=out.device)
|
||||
|
||||
kwargs.update(context_mask = context_mask)
|
||||
|
||||
for _ in range(seq_len):
|
||||
x = out[:, -self.max_seq_len:]
|
||||
input_mask = input_mask[:, -self.max_seq_len:]
|
||||
logits = self.net(x, mask=input_mask, **kwargs)[:, -1, :]
|
||||
if repetition_penalty > 1.0:
|
||||
logits = repetition_penalty_fn(logits, out[-repetition_penalty_ctx:], theta=repetition_penalty)
|
||||
filtered_logits = filter_logits_fn(logits, thres = filter_thres)
|
||||
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
||||
sample = torch.multinomial(probs, 1)
|
||||
|
||||
out = torch.cat((out, sample), dim=-1)
|
||||
input_mask = F.pad(input_mask, (0, 1), value=True)
|
||||
|
||||
if eos_token is not None and (sample == eos_token).all():
|
||||
break
|
||||
|
||||
out = out[:, t:]
|
||||
|
||||
if num_dims == 1:
|
||||
out = out.squeeze(0)
|
||||
|
||||
self.net.train(was_training)
|
||||
return out
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
xi = x[:, :-1]
|
||||
xo = x[:, 1:]
|
||||
|
||||
# help auto-solve an area of confusion around input masks in auto-regressive
|
||||
# if user supplies a mask that is only off by one from the source sequence, resolve it for them
|
||||
mask = kwargs.pop('mask', None)
|
||||
if mask is not None and mask.shape[1] == x.shape[1]:
|
||||
mask = mask[:, :-1]
|
||||
kwargs.update(mask = mask)
|
||||
|
||||
out = self.net(xi, **kwargs)
|
||||
|
||||
loss = F.cross_entropy(out.transpose(1, 2), xo, ignore_index = self.ignore_index)
|
||||
return loss
|
79
codes/models/lucidrains/performer/performer_enc_dec.py
Normal file
79
codes/models/lucidrains/performer/performer_enc_dec.py
Normal file
|
@ -0,0 +1,79 @@
|
|||
import re
|
||||
import torch
|
||||
from torch import nn
|
||||
from performer_pytorch import PerformerLM
|
||||
from autoregressive_wrapper import AutoregressiveWrapper
|
||||
|
||||
ENC_PREFIX = 'enc_'
|
||||
DEC_PREFIX = 'dec_'
|
||||
|
||||
def group_dict_by_key(cond, d):
|
||||
return_val = [dict(),dict()]
|
||||
for key in d.keys():
|
||||
match = bool(cond(key))
|
||||
ind = int(not match)
|
||||
return_val[ind][key] = d[key]
|
||||
return (*return_val,)
|
||||
|
||||
def string_begins_with(prefix, str):
|
||||
return bool(re.match(f'^{prefix}', str))
|
||||
|
||||
def group_by_key_prefix(prefix, d):
|
||||
return group_dict_by_key(lambda x: string_begins_with(prefix, x), d)
|
||||
|
||||
def group_by_key_prefix_and_remove_prefix(prefix, d):
|
||||
kwargs_with_prefix, kwargs = group_dict_by_key(lambda x: string_begins_with(prefix, x), d)
|
||||
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
||||
return kwargs_without_prefix, kwargs
|
||||
|
||||
def extract_enc_dec_kwargs(kwargs):
|
||||
enc_kwargs, kwargs = group_by_key_prefix_and_remove_prefix(ENC_PREFIX, kwargs)
|
||||
dec_kwargs, kwargs = group_by_key_prefix_and_remove_prefix(DEC_PREFIX, kwargs)
|
||||
return enc_kwargs, dec_kwargs, kwargs
|
||||
|
||||
def extract_and_set_enc_dec_kwargs(kwargs):
|
||||
enc_kwargs, dec_kwargs, kwargs = extract_enc_dec_kwargs(kwargs)
|
||||
if 'mask' in enc_kwargs:
|
||||
dec_kwargs.setdefault('context_mask', enc_kwargs['mask'])
|
||||
return enc_kwargs, dec_kwargs, kwargs
|
||||
|
||||
class PerformerEncDec(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
ignore_index = 0,
|
||||
pad_value = 0,
|
||||
tie_token_embeds = False,
|
||||
no_projection = False,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__()
|
||||
enc_kwargs, dec_kwargs, _ = extract_enc_dec_kwargs(kwargs)
|
||||
|
||||
assert 'dim' not in dec_kwargs and 'dim' not in enc_kwargs, 'you must set the dim for both encoder and decoder'
|
||||
|
||||
enc_kwargs['dim'] = dec_kwargs['dim'] = dim
|
||||
enc_kwargs['no_projection'] = dec_kwargs['no_projection'] = no_projection
|
||||
|
||||
dec_kwargs['causal'] = True
|
||||
dec_kwargs['cross_attend'] = True
|
||||
|
||||
enc = PerformerLM(**enc_kwargs)
|
||||
dec = PerformerLM(**dec_kwargs)
|
||||
|
||||
if tie_token_embeds:
|
||||
enc.token_emb = dec.token_emb
|
||||
|
||||
self.enc = enc
|
||||
self.dec = AutoregressiveWrapper(dec, ignore_index = ignore_index, pad_value = pad_value)
|
||||
|
||||
@torch.no_grad()
|
||||
def generate(self, seq_in, seq_out_start, seq_len, **kwargs):
|
||||
enc_kwargs, dec_kwargs, kwargs = extract_and_set_enc_dec_kwargs(kwargs)
|
||||
encodings = self.enc(seq_in, return_encodings = True, **enc_kwargs)
|
||||
return self.dec.generate(seq_out_start, seq_len, context = encodings, **{**dec_kwargs, **kwargs})
|
||||
|
||||
def forward(self, seq_in, seq_out, enc_mask = None, **kwargs):
|
||||
enc_kwargs, dec_kwargs, kwargs = extract_and_set_enc_dec_kwargs(kwargs)
|
||||
encodings = self.enc(seq_in, mask = enc_mask, return_encodings = True, **enc_kwargs)
|
||||
return self.dec(seq_out, context = encodings, context_mask = enc_mask, **dec_kwargs)
|
671
codes/models/lucidrains/performer/performer_pytorch.py
Normal file
671
codes/models/lucidrains/performer/performer_pytorch.py
Normal file
|
@ -0,0 +1,671 @@
|
|||
import math
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
from torch.cuda.amp import autocast
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from functools import partial
|
||||
from contextlib import contextmanager
|
||||
|
||||
from local_attention import LocalAttention
|
||||
from axial_positional_embedding import AxialPositionalEmbedding
|
||||
from reversible import ReversibleSequence, SequentialSequence
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
TORCH_GE_1_8_0 = LooseVersion(torch.__version__) >= LooseVersion('1.8.0')
|
||||
|
||||
try:
|
||||
from apex import amp
|
||||
APEX_AVAILABLE = True
|
||||
except:
|
||||
APEX_AVAILABLE = False
|
||||
|
||||
# helpers
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def empty(tensor):
|
||||
return tensor.numel() == 0
|
||||
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
@contextmanager
|
||||
def null_context():
|
||||
yield
|
||||
|
||||
def cast_tuple(val):
|
||||
return (val,) if not isinstance(val, tuple) else val
|
||||
|
||||
def get_module_device(module):
|
||||
return next(module.parameters()).device
|
||||
|
||||
def find_modules(nn_module, type):
|
||||
return [module for module in nn_module.modules() if isinstance(module, type)]
|
||||
|
||||
class Always(nn.Module):
|
||||
def __init__(self, val):
|
||||
super().__init__()
|
||||
self.val = val
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
return self.val
|
||||
|
||||
# token shifting helper and classes
|
||||
|
||||
def shift(t, amount, mask = None):
|
||||
if amount == 0:
|
||||
return t
|
||||
|
||||
if exists(mask):
|
||||
t = t.masked_fill(~mask[..., None], 0.)
|
||||
|
||||
return F.pad(t, (0, 0, amount, -amount), value = 0.)
|
||||
|
||||
class PreShiftTokens(nn.Module):
|
||||
def __init__(self, shifts, fn):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
self.shifts = tuple(shifts)
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
mask = kwargs.get('mask', None)
|
||||
shifts = self.shifts
|
||||
segments = len(shifts)
|
||||
feats_per_shift = x.shape[-1] // segments
|
||||
splitted = x.split(feats_per_shift, dim = -1)
|
||||
segments_to_shift, rest = splitted[:segments], splitted[segments:]
|
||||
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts)))
|
||||
x = torch.cat((*segments_to_shift, *rest), dim = -1)
|
||||
return self.fn(x, **kwargs)
|
||||
|
||||
# kernel functions
|
||||
|
||||
# transcribed from jax to pytorch from
|
||||
# https://github.com/google-research/google-research/blob/master/performer/fast_attention/jax/fast_attention.py
|
||||
|
||||
def softmax_kernel(data, *, projection_matrix, is_query, normalize_data=True, eps=1e-4, device = None):
|
||||
b, h, *_ = data.shape
|
||||
|
||||
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.
|
||||
|
||||
ratio = (projection_matrix.shape[0] ** -0.5)
|
||||
|
||||
projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
|
||||
projection = projection.type_as(data)
|
||||
|
||||
data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)
|
||||
|
||||
diag_data = data ** 2
|
||||
diag_data = torch.sum(diag_data, dim=-1)
|
||||
diag_data = (diag_data / 2.0) * (data_normalizer ** 2)
|
||||
diag_data = diag_data.unsqueeze(dim=-1)
|
||||
|
||||
if is_query:
|
||||
data_dash = ratio * (
|
||||
torch.exp(data_dash - diag_data -
|
||||
torch.amax(data_dash, dim=-1, keepdim=True)) + eps)
|
||||
else:
|
||||
data_dash = ratio * (
|
||||
torch.exp(data_dash - diag_data - torch.amax(data_dash, dim=(-1, -2), keepdim=True)) + eps)
|
||||
|
||||
return data_dash.type_as(data)
|
||||
|
||||
def generalized_kernel(data, *, projection_matrix, kernel_fn = nn.ReLU(), kernel_epsilon = 0.001, normalize_data = True, device = None):
|
||||
b, h, *_ = data.shape
|
||||
|
||||
data_normalizer = (data.shape[-1] ** -0.25) if normalize_data else 1.
|
||||
|
||||
if projection_matrix is None:
|
||||
return kernel_fn(data_normalizer * data) + kernel_epsilon
|
||||
|
||||
projection = repeat(projection_matrix, 'j d -> b h j d', b = b, h = h)
|
||||
projection = projection.type_as(data)
|
||||
|
||||
data_dash = torch.einsum('...id,...jd->...ij', (data_normalizer * data), projection)
|
||||
|
||||
data_prime = kernel_fn(data_dash) + kernel_epsilon
|
||||
return data_prime.type_as(data)
|
||||
|
||||
def orthogonal_matrix_chunk(cols, device = None):
|
||||
unstructured_block = torch.randn((cols, cols), device = device)
|
||||
if TORCH_GE_1_8_0:
|
||||
q, r = torch.linalg.qr(unstructured_block.cpu(), mode = 'reduced')
|
||||
else:
|
||||
q, r = torch.qr(unstructured_block.cpu(), some = True)
|
||||
q, r = map(lambda t: t.to(device), (q, r))
|
||||
return q.t()
|
||||
|
||||
def gaussian_orthogonal_random_matrix(nb_rows, nb_columns, scaling = 0, device = None):
|
||||
nb_full_blocks = int(nb_rows / nb_columns)
|
||||
|
||||
block_list = []
|
||||
|
||||
for _ in range(nb_full_blocks):
|
||||
q = orthogonal_matrix_chunk(nb_columns, device = device)
|
||||
block_list.append(q)
|
||||
|
||||
remaining_rows = nb_rows - nb_full_blocks * nb_columns
|
||||
if remaining_rows > 0:
|
||||
q = orthogonal_matrix_chunk(nb_columns, device = device)
|
||||
block_list.append(q[:remaining_rows])
|
||||
|
||||
final_matrix = torch.cat(block_list)
|
||||
|
||||
if scaling == 0:
|
||||
multiplier = torch.randn((nb_rows, nb_columns), device = device).norm(dim = 1)
|
||||
elif scaling == 1:
|
||||
multiplier = math.sqrt((float(nb_columns))) * torch.ones((nb_rows,), device = device)
|
||||
else:
|
||||
raise ValueError(f'Invalid scaling {scaling}')
|
||||
|
||||
return torch.diag(multiplier) @ final_matrix
|
||||
|
||||
# linear attention classes with softmax kernel
|
||||
|
||||
# non-causal linear attention
|
||||
def linear_attention(q, k, v):
|
||||
k_cumsum = k.sum(dim = -2)
|
||||
D_inv = 1. / torch.einsum('...nd,...d->...n', q, k_cumsum.type_as(q))
|
||||
context = torch.einsum('...nd,...ne->...de', k, v)
|
||||
out = torch.einsum('...de,...nd,...n->...ne', context, q, D_inv)
|
||||
return out
|
||||
|
||||
# efficient causal linear attention, created by EPFL
|
||||
# TODO: rewrite EPFL's CUDA kernel to do mixed precision and remove half to float conversion and back
|
||||
def causal_linear_attention(q, k, v, eps = 1e-6):
|
||||
from fast_transformers.causal_product import CausalDotProduct
|
||||
autocast_enabled = torch.is_autocast_enabled()
|
||||
is_half = isinstance(q, torch.cuda.HalfTensor)
|
||||
assert not is_half or APEX_AVAILABLE, 'half tensors can only be used if nvidia apex is available'
|
||||
cuda_context = null_context if not autocast_enabled else partial(autocast, enabled = False)
|
||||
|
||||
causal_dot_product_fn = amp.float_function(CausalDotProduct.apply) if is_half else CausalDotProduct.apply
|
||||
|
||||
k_cumsum = k.cumsum(dim=-2) + eps
|
||||
D_inv = 1. / torch.einsum('...nd,...nd->...n', q, k_cumsum.type_as(q))
|
||||
|
||||
with cuda_context():
|
||||
if autocast_enabled:
|
||||
q, k, v = map(lambda t: t.float(), (q, k, v))
|
||||
|
||||
out = causal_dot_product_fn(q, k, v)
|
||||
|
||||
out = torch.einsum('...nd,...n->...nd', out, D_inv)
|
||||
return out
|
||||
|
||||
# inefficient causal linear attention, without cuda code, for reader's reference
|
||||
# not being used
|
||||
def causal_linear_attention_noncuda(q, k, v, chunk_size = 128, eps = 1e-6):
|
||||
last_k_cumsum = 0
|
||||
last_context_cumsum = 0
|
||||
outs = []
|
||||
|
||||
for q, k, v in zip(*map(lambda t: t.chunk(chunk_size, dim = -2), (q, k, v))):
|
||||
k_cumsum = last_k_cumsum + k.cumsum(dim=-2)
|
||||
|
||||
D_inv = 1. / torch.einsum('...nd,...nd->...n', q, k_cumsum.type_as(q) + eps)
|
||||
context = torch.einsum('...nd,...ne->...nde', k, v)
|
||||
context_cumsum = last_context_cumsum + context.cumsum(dim=-3)
|
||||
out = torch.einsum('...nde,...nd,...n->...ne', context_cumsum, q, D_inv)
|
||||
|
||||
last_k_cumsum = k_cumsum[:, :, -1:]
|
||||
last_context_cumsum = context_cumsum[:, :, -1:]
|
||||
outs.append(out)
|
||||
|
||||
return torch.cat(outs, dim = -2)
|
||||
|
||||
class FastAttention(nn.Module):
|
||||
def __init__(self, dim_heads, nb_features = None, ortho_scaling = 0, causal = False, generalized_attention = False, kernel_fn = nn.ReLU(), no_projection = False):
|
||||
super().__init__()
|
||||
nb_features = default(nb_features, int(dim_heads * math.log(dim_heads)))
|
||||
|
||||
self.dim_heads = dim_heads
|
||||
self.nb_features = nb_features
|
||||
self.ortho_scaling = ortho_scaling
|
||||
|
||||
self.create_projection = partial(gaussian_orthogonal_random_matrix, nb_rows = self.nb_features, nb_columns = dim_heads, scaling = ortho_scaling)
|
||||
projection_matrix = self.create_projection()
|
||||
self.register_buffer('projection_matrix', projection_matrix)
|
||||
|
||||
self.generalized_attention = generalized_attention
|
||||
self.kernel_fn = kernel_fn
|
||||
|
||||
# if this is turned on, no projection will be used
|
||||
# queries and keys will be softmax-ed as in the original efficient attention paper
|
||||
self.no_projection = no_projection
|
||||
|
||||
self.causal = causal
|
||||
if causal:
|
||||
try:
|
||||
import fast_transformers.causal_product.causal_product_cuda
|
||||
self.causal_linear_fn = partial(causal_linear_attention)
|
||||
except ImportError:
|
||||
print('unable to import cuda code for auto-regressive Performer. will default to the memory inefficient non-cuda version')
|
||||
self.causal_linear_fn = causal_linear_attention_noncuda
|
||||
|
||||
@torch.no_grad()
|
||||
def redraw_projection_matrix(self, device):
|
||||
projections = self.create_projection(device = device)
|
||||
self.projection_matrix.copy_(projections)
|
||||
del projections
|
||||
|
||||
def forward(self, q, k, v):
|
||||
device = q.device
|
||||
|
||||
if self.no_projection:
|
||||
q = q.softmax(dim = -1)
|
||||
k = torch.exp(k) if self.causal else k.softmax(dim = -2)
|
||||
|
||||
elif self.generalized_attention:
|
||||
create_kernel = partial(generalized_kernel, kernel_fn = self.kernel_fn, projection_matrix = self.projection_matrix, device = device)
|
||||
q, k = map(create_kernel, (q, k))
|
||||
|
||||
else:
|
||||
create_kernel = partial(softmax_kernel, projection_matrix = self.projection_matrix, device = device)
|
||||
q = create_kernel(q, is_query = True)
|
||||
k = create_kernel(k, is_query = False)
|
||||
|
||||
attn_fn = linear_attention if not self.causal else self.causal_linear_fn
|
||||
out = attn_fn(q, k, v)
|
||||
return out
|
||||
|
||||
# a module for keeping track of when to update the projections
|
||||
|
||||
class ProjectionUpdater(nn.Module):
|
||||
def __init__(self, instance, feature_redraw_interval):
|
||||
super().__init__()
|
||||
self.instance = instance
|
||||
self.feature_redraw_interval = feature_redraw_interval
|
||||
self.register_buffer('calls_since_last_redraw', torch.tensor(0))
|
||||
|
||||
def fix_projections_(self):
|
||||
self.feature_redraw_interval = None
|
||||
|
||||
def redraw_projections(self):
|
||||
model = self.instance
|
||||
|
||||
if not self.training:
|
||||
return
|
||||
|
||||
if exists(self.feature_redraw_interval) and self.calls_since_last_redraw >= self.feature_redraw_interval:
|
||||
device = get_module_device(model)
|
||||
|
||||
fast_attentions = find_modules(model, FastAttention)
|
||||
for fast_attention in fast_attentions:
|
||||
fast_attention.redraw_projection_matrix(device)
|
||||
|
||||
self.calls_since_last_redraw.zero_()
|
||||
return
|
||||
|
||||
self.calls_since_last_redraw += 1
|
||||
|
||||
def forward(self, x):
|
||||
raise NotImplemented
|
||||
|
||||
# classes
|
||||
|
||||
class ReZero(nn.Module):
|
||||
def __init__(self, fn):
|
||||
super().__init__()
|
||||
self.g = nn.Parameter(torch.tensor(1e-3))
|
||||
self.fn = fn
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(x, **kwargs) * self.g
|
||||
|
||||
class PreScaleNorm(nn.Module):
|
||||
def __init__(self, dim, fn, eps=1e-5):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
self.g = nn.Parameter(torch.ones(1))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
n = torch.norm(x, dim=-1, keepdim=True).clamp(min=self.eps)
|
||||
x = x / n * self.g
|
||||
return self.fn(x, **kwargs)
|
||||
|
||||
class PreLayerNorm(nn.Module):
|
||||
def __init__(self, dim, fn):
|
||||
super().__init__()
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.fn = fn
|
||||
def forward(self, x, **kwargs):
|
||||
return self.fn(self.norm(x), **kwargs)
|
||||
|
||||
class Chunk(nn.Module):
|
||||
def __init__(self, chunks, fn, along_dim = -1):
|
||||
super().__init__()
|
||||
self.dim = along_dim
|
||||
self.chunks = chunks
|
||||
self.fn = fn
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
if self.chunks == 1:
|
||||
return self.fn(x, **kwargs)
|
||||
chunks = x.chunk(self.chunks, dim = self.dim)
|
||||
return torch.cat([self.fn(c, **kwargs) for c in chunks], dim = self.dim)
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
def __init__(self, dim, mult = 4, dropout = 0., activation = None, glu = False):
|
||||
super().__init__()
|
||||
activation = default(activation, nn.GELU)
|
||||
|
||||
self.glu = glu
|
||||
self.w1 = nn.Linear(dim, dim * mult * (2 if glu else 1))
|
||||
self.act = activation()
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.w2 = nn.Linear(dim * mult, dim)
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
if not self.glu:
|
||||
x = self.w1(x)
|
||||
x = self.act(x)
|
||||
else:
|
||||
x, v = self.w1(x).chunk(2, dim=-1)
|
||||
x = self.act(x) * v
|
||||
|
||||
x = self.dropout(x)
|
||||
x = self.w2(x)
|
||||
return x
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
causal = False,
|
||||
heads = 8,
|
||||
dim_head = 64,
|
||||
local_heads = 0,
|
||||
local_window_size = 256,
|
||||
nb_features = None,
|
||||
feature_redraw_interval = 1000,
|
||||
generalized_attention = False,
|
||||
kernel_fn = nn.ReLU(),
|
||||
dropout = 0.,
|
||||
no_projection = False,
|
||||
qkv_bias = False,
|
||||
attn_out_bias = True
|
||||
):
|
||||
super().__init__()
|
||||
assert dim % heads == 0, 'dimension must be divisible by number of heads'
|
||||
dim_head = default(dim_head, dim // heads)
|
||||
inner_dim = dim_head * heads
|
||||
self.fast_attention = FastAttention(dim_head, nb_features, causal = causal, generalized_attention = generalized_attention, kernel_fn = kernel_fn, no_projection = no_projection)
|
||||
|
||||
self.heads = heads
|
||||
self.global_heads = heads - local_heads
|
||||
self.local_attn = LocalAttention(window_size = local_window_size, causal = causal, autopad = True, dropout = dropout, look_forward = int(not causal), rel_pos_emb_config = (dim_head, local_heads)) if local_heads > 0 else None
|
||||
|
||||
self.to_q = nn.Linear(dim, inner_dim, bias = qkv_bias)
|
||||
self.to_k = nn.Linear(dim, inner_dim, bias = qkv_bias)
|
||||
self.to_v = nn.Linear(dim, inner_dim, bias = qkv_bias)
|
||||
self.to_out = nn.Linear(inner_dim, dim, bias = attn_out_bias)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x, pos_emb = None, context = None, mask = None, context_mask = None, **kwargs):
|
||||
b, n, _, h, gh = *x.shape, self.heads, self.global_heads
|
||||
|
||||
cross_attend = exists(context)
|
||||
|
||||
context = default(context, x)
|
||||
context_mask = default(context_mask, mask) if not cross_attend else context_mask
|
||||
|
||||
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
|
||||
|
||||
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
||||
(q, lq), (k, lk), (v, lv) = map(lambda t: (t[:, :gh], t[:, gh:]), (q, k, v))
|
||||
|
||||
attn_outs = []
|
||||
|
||||
if not empty(q):
|
||||
if exists(context_mask):
|
||||
global_mask = context_mask[:, None, :, None]
|
||||
v.masked_fill_(~global_mask, 0.)
|
||||
|
||||
if exists(pos_emb) and not cross_attend:
|
||||
q, k = apply_rotary_pos_emb(q, k, pos_emb)
|
||||
|
||||
out = self.fast_attention(q, k, v)
|
||||
attn_outs.append(out)
|
||||
|
||||
if not empty(lq):
|
||||
assert not cross_attend, 'local attention is not compatible with cross attention'
|
||||
out = self.local_attn(lq, lk, lv, input_mask = mask)
|
||||
attn_outs.append(out)
|
||||
|
||||
out = torch.cat(attn_outs, dim = 1)
|
||||
out = rearrange(out, 'b h n d -> b n (h d)')
|
||||
out = self.to_out(out)
|
||||
return self.dropout(out)
|
||||
|
||||
class SelfAttention(Attention):
|
||||
def forward(self, *args, context = None, **kwargs):
|
||||
assert not exists(context), 'self attention should not receive context'
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class CrossAttention(Attention):
|
||||
def forward(self, *args, context = None, **kwargs):
|
||||
assert exists(context), 'cross attention should receive context'
|
||||
return super().forward(*args, context = context, **kwargs)
|
||||
|
||||
# positional embeddings
|
||||
|
||||
class AbsolutePositionalEmbedding(nn.Module):
|
||||
def __init__(self, dim, max_seq_len):
|
||||
super().__init__()
|
||||
self.emb = nn.Embedding(max_seq_len, dim)
|
||||
|
||||
def forward(self, x):
|
||||
t = torch.arange(x.shape[1], device=x.device)
|
||||
return self.emb(t)
|
||||
|
||||
# rotary positional embedding helpers
|
||||
|
||||
def rotate_every_two(x):
|
||||
x = rearrange(x, '... (d j) -> ... d j', j = 2)
|
||||
x1, x2 = x.unbind(dim = -1)
|
||||
x = torch.stack((-x2, x1), dim = -1)
|
||||
return rearrange(x, '... d j -> ... (d j)')
|
||||
|
||||
def apply_rotary_pos_emb(q, k, sinu_pos):
|
||||
sinu_pos = rearrange(sinu_pos, '() n (j d) -> n j d', j = 2)
|
||||
sin, cos = sinu_pos.unbind(dim = -2)
|
||||
sin, cos = map(lambda t: repeat(t, 'b n -> b (n j)', j = 2), (sin, cos))
|
||||
q, k = map(lambda t: (t * cos) + (rotate_every_two(t) * sin), (q, k))
|
||||
return q, k
|
||||
|
||||
# sinusoidal positional embeddings
|
||||
|
||||
class FixedPositionalEmbedding(nn.Module):
|
||||
def __init__(self, dim, max_seq_len):
|
||||
super().__init__()
|
||||
inv_freq = 1. / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
||||
position = torch.arange(0, max_seq_len, dtype=torch.float)
|
||||
sinusoid_inp = torch.einsum("i,j->ij", position, inv_freq)
|
||||
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
||||
self.register_buffer('emb', emb)
|
||||
|
||||
def forward(self, x):
|
||||
return self.emb[None, :x.shape[1], :].to(x)
|
||||
|
||||
# performer
|
||||
|
||||
class Performer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
depth,
|
||||
heads,
|
||||
dim_head,
|
||||
local_attn_heads = 0,
|
||||
local_window_size = 256,
|
||||
causal = False,
|
||||
ff_mult = 4,
|
||||
nb_features = None,
|
||||
feature_redraw_interval = 1000,
|
||||
reversible = False,
|
||||
ff_chunks = 1,
|
||||
generalized_attention = False,
|
||||
kernel_fn = nn.ReLU(),
|
||||
use_scalenorm = False,
|
||||
use_rezero = False,
|
||||
ff_glu = False,
|
||||
ff_dropout = 0.,
|
||||
attn_dropout = 0.,
|
||||
cross_attend = False,
|
||||
no_projection = False,
|
||||
auto_check_redraw = True,
|
||||
qkv_bias = True,
|
||||
attn_out_bias = True,
|
||||
shift_tokens = False
|
||||
):
|
||||
super().__init__()
|
||||
layers = nn.ModuleList([])
|
||||
local_attn_heads = cast_tuple(local_attn_heads)
|
||||
local_attn_heads = local_attn_heads * depth if len(local_attn_heads) == 1 else local_attn_heads
|
||||
assert len(local_attn_heads) == depth, 'tuple specifying number of local attention heads per depth must be equal to the total depth'
|
||||
assert all(map(lambda n: n >= 0 and n <= heads, local_attn_heads)), 'local attention head value must be less than the total number of heads'
|
||||
|
||||
if use_scalenorm:
|
||||
wrapper_fn = partial(PreScaleNorm, dim)
|
||||
elif use_rezero:
|
||||
wrapper_fn = ReZero
|
||||
else:
|
||||
wrapper_fn = partial(PreLayerNorm, dim)
|
||||
|
||||
for _, local_heads in zip(range(depth), local_attn_heads):
|
||||
|
||||
attn = SelfAttention(dim, causal = causal, heads = heads, dim_head = dim_head, local_heads = local_heads, local_window_size = local_window_size, nb_features = nb_features, generalized_attention = generalized_attention, kernel_fn = kernel_fn, dropout = attn_dropout, no_projection = no_projection, qkv_bias = qkv_bias, attn_out_bias = attn_out_bias)
|
||||
ff = Chunk(ff_chunks, FeedForward(dim, mult = ff_mult, dropout = ff_dropout, glu = ff_glu), along_dim = 1)
|
||||
|
||||
if shift_tokens:
|
||||
shift = (0, 1) if causal else (-1, 0, 1)
|
||||
attn, ff = map(lambda t: PreShiftTokens(shift, t), (attn, ff))
|
||||
|
||||
attn, ff = map(wrapper_fn, (attn, ff))
|
||||
layers.append(nn.ModuleList([attn, ff]))
|
||||
|
||||
if not cross_attend:
|
||||
continue
|
||||
|
||||
layers.append(nn.ModuleList([
|
||||
wrapper_fn(CrossAttention(dim, heads = heads, dim_head = dim_head, nb_features = nb_features, generalized_attention = generalized_attention, kernel_fn = kernel_fn, dropout = attn_dropout, no_projection = no_projection, qkv_bias = qkv_bias, attn_out_bias = attn_out_bias)),
|
||||
wrapper_fn(Chunk(ff_chunks, FeedForward(dim, mult = ff_mult, dropout = ff_dropout, glu = ff_glu), along_dim = 1))
|
||||
]))
|
||||
|
||||
execute_type = ReversibleSequence if reversible else SequentialSequence
|
||||
|
||||
route_attn = ((True, False),) * depth * (2 if cross_attend else 1)
|
||||
route_context = ((False, False), (True, False)) * depth
|
||||
attn_route_map = {'mask': route_attn, 'pos_emb': route_attn}
|
||||
context_route_map = {'context': route_context, 'context_mask': route_context} if cross_attend else {}
|
||||
self.net = execute_type(layers, args_route = {**attn_route_map, **context_route_map})
|
||||
|
||||
# keeping track of when to redraw projections for all attention layers
|
||||
self.auto_check_redraw = auto_check_redraw
|
||||
self.proj_updater = ProjectionUpdater(self.net, feature_redraw_interval)
|
||||
|
||||
def fix_projection_matrices_(self):
|
||||
self.proj_updater.feature_redraw_interval = None
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
if self.auto_check_redraw:
|
||||
self.proj_updater.redraw_projections()
|
||||
return self.net(x, **kwargs)
|
||||
|
||||
class PerformerLM(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
num_tokens,
|
||||
max_seq_len,
|
||||
dim,
|
||||
depth,
|
||||
heads,
|
||||
dim_head = 64,
|
||||
local_attn_heads = 0,
|
||||
local_window_size = 256,
|
||||
causal = False,
|
||||
ff_mult = 4,
|
||||
nb_features = None,
|
||||
feature_redraw_interval = 1000,
|
||||
reversible = False,
|
||||
ff_chunks = 1,
|
||||
ff_glu = False,
|
||||
emb_dropout = 0.,
|
||||
ff_dropout = 0.,
|
||||
attn_dropout = 0.,
|
||||
generalized_attention = False,
|
||||
kernel_fn = nn.ReLU(),
|
||||
use_scalenorm = False,
|
||||
use_rezero = False,
|
||||
cross_attend = False,
|
||||
no_projection = False,
|
||||
tie_embed = False,
|
||||
rotary_position_emb = True,
|
||||
axial_position_emb = False,
|
||||
axial_position_shape = None,
|
||||
auto_check_redraw = True,
|
||||
qkv_bias = False,
|
||||
attn_out_bias = False,
|
||||
shift_tokens = False
|
||||
):
|
||||
super().__init__()
|
||||
local_attn_heads = cast_tuple(local_attn_heads)
|
||||
|
||||
self.max_seq_len = max_seq_len
|
||||
self.token_emb = nn.Embedding(num_tokens, dim)
|
||||
|
||||
if rotary_position_emb:
|
||||
self.pos_emb = FixedPositionalEmbedding(dim, max_seq_len)
|
||||
self.layer_pos_emb = FixedPositionalEmbedding(dim_head, max_seq_len)
|
||||
elif axial_position_emb:
|
||||
axial_position_shape = default(axial_position_shape, (math.ceil(max_seq_len / 64), 64))
|
||||
self.pos_emb = AxialPositionalEmbedding(dim, axial_position_shape)
|
||||
self.layer_pos_emb = Always(None)
|
||||
else:
|
||||
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len)
|
||||
self.layer_pos_emb = Always(None)
|
||||
|
||||
self.dropout = nn.Dropout(emb_dropout)
|
||||
|
||||
self.performer = Performer(dim, depth, heads, dim_head, local_attn_heads, local_window_size, causal, ff_mult, nb_features, feature_redraw_interval, reversible, ff_chunks, generalized_attention, kernel_fn, use_scalenorm, use_rezero, ff_glu, ff_dropout, attn_dropout, cross_attend, no_projection, auto_check_redraw, qkv_bias, attn_out_bias, shift_tokens)
|
||||
self.norm = nn.LayerNorm(dim)
|
||||
self.to_out = nn.Linear(dim, num_tokens) if not tie_embed else None
|
||||
|
||||
def check_redraw_projections(self):
|
||||
self.performer.check_redraw_projections()
|
||||
|
||||
def fix_projection_matrices_(self):
|
||||
self.performer.fix_projection_matrices_()
|
||||
|
||||
def forward(self, x, return_encodings = False, **kwargs):
|
||||
b, n, device = *x.shape, x.device
|
||||
assert n <= self.max_seq_len, f'sequence length {n} must be less than the max sequence length {self.max_seq_len}'
|
||||
|
||||
# token and positional embeddings
|
||||
x = self.token_emb(x)
|
||||
x += self.pos_emb(x)
|
||||
|
||||
x = self.dropout(x)
|
||||
|
||||
# performer layers
|
||||
|
||||
layer_pos_emb = self.layer_pos_emb(x)
|
||||
x = self.performer(x, pos_emb = layer_pos_emb, **kwargs)
|
||||
|
||||
# norm and to logits
|
||||
x = self.norm(x)
|
||||
|
||||
if return_encodings:
|
||||
return x
|
||||
|
||||
if exists(self.to_out):
|
||||
return self.to_out(x)
|
||||
|
||||
return x @ self.token_emb.weight.t()
|
156
codes/models/lucidrains/performer/reversible.py
Normal file
156
codes/models/lucidrains/performer/reversible.py
Normal file
|
@ -0,0 +1,156 @@
|
|||
import torch
|
||||
import torch.nn as nn
|
||||
from operator import itemgetter
|
||||
from torch.autograd.function import Function
|
||||
from torch.utils.checkpoint import get_device_states, set_device_states
|
||||
|
||||
# for routing arguments into the functions of the reversible layer
|
||||
def route_args(router, args, depth):
|
||||
routed_args = [(dict(), dict()) for _ in range(depth)]
|
||||
matched_keys = [key for key in args.keys() if key in router]
|
||||
|
||||
for key in matched_keys:
|
||||
val = args[key]
|
||||
for depth, ((f_args, g_args), routes) in enumerate(zip(routed_args, router[key])):
|
||||
new_f_args, new_g_args = map(lambda route: ({key: val} if route else {}), routes)
|
||||
routed_args[depth] = ({**f_args, **new_f_args}, {**g_args, **new_g_args})
|
||||
return routed_args
|
||||
|
||||
# following example for saving and setting rng here https://pytorch.org/docs/stable/_modules/torch/utils/checkpoint.html
|
||||
class Deterministic(nn.Module):
|
||||
def __init__(self, net):
|
||||
super().__init__()
|
||||
self.net = net
|
||||
self.cpu_state = None
|
||||
self.cuda_in_fwd = None
|
||||
self.gpu_devices = None
|
||||
self.gpu_states = None
|
||||
|
||||
def record_rng(self, *args):
|
||||
self.cpu_state = torch.get_rng_state()
|
||||
if torch.cuda._initialized:
|
||||
self.cuda_in_fwd = True
|
||||
self.gpu_devices, self.gpu_states = get_device_states(*args)
|
||||
|
||||
def forward(self, *args, record_rng = False, set_rng = False, **kwargs):
|
||||
if record_rng:
|
||||
self.record_rng(*args)
|
||||
|
||||
if not set_rng:
|
||||
return self.net(*args, **kwargs)
|
||||
|
||||
rng_devices = []
|
||||
if self.cuda_in_fwd:
|
||||
rng_devices = self.gpu_devices
|
||||
|
||||
with torch.random.fork_rng(devices=rng_devices, enabled=True):
|
||||
torch.set_rng_state(self.cpu_state)
|
||||
if self.cuda_in_fwd:
|
||||
set_device_states(self.gpu_devices, self.gpu_states)
|
||||
return self.net(*args, **kwargs)
|
||||
|
||||
# heavily inspired by https://github.com/RobinBruegger/RevTorch/blob/master/revtorch/revtorch.py
|
||||
# once multi-GPU is confirmed working, refactor and send PR back to source
|
||||
class ReversibleBlock(nn.Module):
|
||||
def __init__(self, f, g):
|
||||
super().__init__()
|
||||
self.f = Deterministic(f)
|
||||
self.g = Deterministic(g)
|
||||
|
||||
def forward(self, x, f_args = {}, g_args = {}):
|
||||
x1, x2 = torch.chunk(x, 2, dim=2)
|
||||
y1, y2 = None, None
|
||||
|
||||
with torch.no_grad():
|
||||
y1 = x1 + self.f(x2, record_rng=self.training, **f_args)
|
||||
y2 = x2 + self.g(y1, record_rng=self.training, **g_args)
|
||||
|
||||
return torch.cat([y1, y2], dim=2)
|
||||
|
||||
def backward_pass(self, y, dy, f_args = {}, g_args = {}):
|
||||
y1, y2 = torch.chunk(y, 2, dim=2)
|
||||
del y
|
||||
|
||||
dy1, dy2 = torch.chunk(dy, 2, dim=2)
|
||||
del dy
|
||||
|
||||
with torch.enable_grad():
|
||||
y1.requires_grad = True
|
||||
gy1 = self.g(y1, set_rng=True, **g_args)
|
||||
torch.autograd.backward(gy1, dy2)
|
||||
|
||||
with torch.no_grad():
|
||||
x2 = y2 - gy1
|
||||
del y2, gy1
|
||||
|
||||
dx1 = dy1 + y1.grad
|
||||
del dy1
|
||||
y1.grad = None
|
||||
|
||||
with torch.enable_grad():
|
||||
x2.requires_grad = True
|
||||
fx2 = self.f(x2, set_rng=True, **f_args)
|
||||
torch.autograd.backward(fx2, dx1, retain_graph=True)
|
||||
|
||||
with torch.no_grad():
|
||||
x1 = y1 - fx2
|
||||
del y1, fx2
|
||||
|
||||
dx2 = dy2 + x2.grad
|
||||
del dy2
|
||||
x2.grad = None
|
||||
|
||||
x = torch.cat([x1, x2.detach()], dim=2)
|
||||
dx = torch.cat([dx1, dx2], dim=2)
|
||||
|
||||
return x, dx
|
||||
|
||||
class _ReversibleFunction(Function):
|
||||
@staticmethod
|
||||
def forward(ctx, x, blocks, args):
|
||||
ctx.args = args
|
||||
for block, kwarg in zip(blocks, args):
|
||||
x = block(x, **kwarg)
|
||||
ctx.y = x.detach()
|
||||
ctx.blocks = blocks
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, dy):
|
||||
y = ctx.y
|
||||
args = ctx.args
|
||||
for block, kwargs in zip(ctx.blocks[::-1], args[::-1]):
|
||||
y, dy = block.backward_pass(y, dy, **kwargs)
|
||||
return dy, None, None
|
||||
|
||||
class SequentialSequence(nn.Module):
|
||||
def __init__(self, layers, args_route = {}):
|
||||
super().__init__()
|
||||
assert all(len(route) == len(layers) for route in args_route.values()), 'each argument route map must have the same depth as the number of sequential layers'
|
||||
self.layers = layers
|
||||
self.args_route = args_route
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
args = route_args(self.args_route, kwargs, len(self.layers))
|
||||
layers_and_args = list(zip(self.layers, args))
|
||||
|
||||
for (f, g), (f_args, g_args) in layers_and_args:
|
||||
x = x + f(x, **f_args)
|
||||
x = x + g(x, **g_args)
|
||||
return x
|
||||
|
||||
class ReversibleSequence(nn.Module):
|
||||
def __init__(self, blocks, args_route = {}):
|
||||
super().__init__()
|
||||
self.args_route = args_route
|
||||
self.blocks = nn.ModuleList([ReversibleBlock(f=f, g=g) for f, g in blocks])
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
x = torch.cat([x, x], dim=-1)
|
||||
|
||||
blocks = self.blocks
|
||||
args = route_args(self.args_route, kwargs, len(blocks))
|
||||
args = list(map(lambda x: {'f_args': x[0], 'g_args': x[1]}, args))
|
||||
|
||||
out = _ReversibleFunction.apply(x, blocks, args)
|
||||
return torch.stack(out.chunk(2, dim=-1)).sum(dim=0)
|
Loading…
Reference in New Issue
Block a user