diff --git a/codes/models/audio/tts/unet_diffusion_tts9.py b/codes/models/audio/tts/unet_diffusion_tts9.py index 3ea0da14..672882f0 100644 --- a/codes/models/audio/tts/unet_diffusion_tts9.py +++ b/codes/models/audio/tts/unet_diffusion_tts9.py @@ -157,6 +157,7 @@ class DiffusionTts(nn.Module): kernel_size=3, scale_factor=2, time_embed_dim_multiplier=4, + freeze_main_net=False, efficient_convs=True, # Uses kernels with width of 1 in several places rather than 3. use_scale_shift_norm=True, # Parameters for regularization. @@ -188,6 +189,7 @@ class DiffusionTts(nn.Module): self.unconditioned_percentage = unconditioned_percentage self.enable_fp16 = use_fp16 self.alignment_size = 2 ** (len(channel_mult)+1) + self.freeze_main_net = freeze_main_net padding = 1 if kernel_size == 3 else 2 down_kernel = 1 if efficient_convs else 3 @@ -379,7 +381,17 @@ class DiffusionTts(nn.Module): zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)), ) + if self.freeze_main_net: + mains = [self.time_embed, self.contextual_embedder, self.conditioning_conv, self.unconditioned_embedding, self.conditioning_timestep_integrator, + self.input_blocks, self.middle_block, self.output_blocks, self.out] + for m in mains: + for p in m.parameters(): + p.requires_grad = False + p.DO_NOT_TRAIN = True + def get_grad_norm_parameter_groups(self): + if self.freeze_main_net: + return {} groups = { 'minicoder': list(self.contextual_embedder.parameters()), 'input_blocks': list(self.input_blocks.parameters()), diff --git a/codes/models/audio/tts/unet_diffusion_tts_flat.py b/codes/models/audio/tts/unet_diffusion_tts_flat.py index 72e18b11..5af7b50d 100644 --- a/codes/models/audio/tts/unet_diffusion_tts_flat.py +++ b/codes/models/audio/tts/unet_diffusion_tts_flat.py @@ -80,6 +80,7 @@ class DiffusionTtsFlat(nn.Module): self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2), CheckpointedXTransformerEncoder( needs_permute=True, + checkpoint=False, # This is repeatedly executed for many conditioning signals, which is incompatible with checkpointing & DDP. max_seq_len=-1, use_pos_emb=False, attn_layers=Encoder( @@ -166,18 +167,16 @@ class DiffusionTtsFlat(nn.Module): conds = [] for j in range(speech_conditioning_input.shape[1]): conds.append(self.contextual_embedder(speech_conditioning_input[:, j])) - conds = torch.stack(conds, dim=1) - cond_emb = conds.mean(dim=1) + conds = torch.cat(conds, dim=-1) + cond_emb = conds.mean(dim=-1).unsqueeze(-1) - if len(cond_emb.shape) == 3: # Just take the first element. - cond_emb = cond_emb[:, :, 0] if is_latent(aligned_conditioning): code_emb = self.latent_converter(aligned_conditioning) unused_params.extend(list(self.code_converter.parameters())) else: code_emb = self.code_converter(aligned_conditioning) unused_params.extend(list(self.latent_converter.parameters())) - cond_emb_spread = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1]) + cond_emb_spread = cond_emb.repeat(1, 1, code_emb.shape[-1]) code_emb = self.conditioning_conv(torch.cat([cond_emb_spread, code_emb], dim=1)) # Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.