Support >128px image squares

This commit is contained in:
James Betker 2020-04-21 16:32:59 -06:00
parent 35a421f6ad
commit cc834bd5a3
2 changed files with 5 additions and 3 deletions

View File

@ -4,7 +4,8 @@ import torchvision
class Discriminator_VGG_128(nn.Module): class Discriminator_VGG_128(nn.Module):
def __init__(self, in_nc, nf): # input_img_factor = multiplier to support images over 128x128. Only certain factors are supported.
def __init__(self, in_nc, nf, input_img_factor=1):
super(Discriminator_VGG_128, self).__init__() super(Discriminator_VGG_128, self).__init__()
# [64, 128, 128] # [64, 128, 128]
self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) self.conv0_0 = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
@ -31,7 +32,7 @@ class Discriminator_VGG_128(nn.Module):
self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False) self.conv4_1 = nn.Conv2d(nf * 8, nf * 8, 4, 2, 1, bias=False)
self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True) self.bn4_1 = nn.BatchNorm2d(nf * 8, affine=True)
self.linear1 = nn.Linear(512 * 4 * 4, 100) self.linear1 = nn.Linear(512 * 4 * input_img_factor * 4 * input_img_factor, 100)
self.linear2 = nn.Linear(100, 1) self.linear2 = nn.Linear(100, 1)
# activation function # activation function

View File

@ -32,11 +32,12 @@ def define_G(opt):
# Discriminator # Discriminator
def define_D(opt): def define_D(opt):
img_sz = opt['datasets']['train']['GT_size']
opt_net = opt['network_D'] opt_net = opt['network_D']
which_model = opt_net['which_model_D'] which_model = opt_net['which_model_D']
if which_model == 'discriminator_vgg_128': if which_model == 'discriminator_vgg_128':
netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf']) netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128)
else: else:
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model)) raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
return netD return netD