import math from collections import Counter, defaultdict import torch from torch.optim.lr_scheduler import _LRScheduler import dlas.torch_intermediary as ml from dlas.utils.util import opt_get def get_scheduler_for_name(name, optimizers, scheduler_opt): schedulers = [] for o in optimizers: # Hack to support LARC, which wraps an underlying optimizer. if hasattr(o, 'optim'): o = o.optim if name == 'MultiStepLR': sched = MultiStepLR_Restart(o, scheduler_opt['gen_lr_steps'], restarts=scheduler_opt['restarts'], weights=scheduler_opt['restart_weights'], gamma=scheduler_opt['lr_gamma'], clear_state=scheduler_opt['clear_state'], force_lr=scheduler_opt['force_lr'], warmup_steps=opt_get(scheduler_opt, ['warmup_steps'], 0)) elif name == 'ProgressiveMultiStepLR': sched = ProgressiveMultiStepLR(o, scheduler_opt['gen_lr_steps'], scheduler_opt['progressive_starts'], scheduler_opt['lr_gamma']) elif name == 'CosineAnnealingLR_Restart': sched = CosineAnnealingLR_Restart( o, scheduler_opt['T_period'], scheduler_opt['warmup'], eta_min=scheduler_opt['eta_min'], restarts=scheduler_opt['restarts'], weights=scheduler_opt['restart_weights']) else: raise NotImplementedError('Scheduler not available') schedulers.append(sched) return schedulers # This scheduler is specifically designed to modulate the learning rate of several different param groups configured # by a generator or discriminator that slowly adds new stages one at a time, e.g. like progressive growing of GANs. class ProgressiveMultiStepLR(_LRScheduler): def __init__(self, optimizer, milestones, group_starts, gamma=0.1): self.milestones = Counter(milestones) self.gamma = gamma self.group_starts = group_starts super(ProgressiveMultiStepLR, self).__init__(optimizer) def get_lr(self): group_lrs = [] assert len(self.optimizer.param_groups) == len(self.group_starts) for group, group_start in zip(self.optimizer.param_groups, self.group_starts): if self.last_epoch - group_start not in self.milestones: group_lrs.append(group['lr']) else: group_lrs.append(group['lr'] * self.gamma) return group_lrs class MultiStepLR_Restart(_LRScheduler): def __init__(self, optimizer, milestones, restarts=None, weights=None, gamma=0.1, clear_state=False, force_lr=False, last_epoch=-1, warmup_steps=0): self.milestones = Counter(milestones) self.gamma = gamma self.clear_state = clear_state self.restarts = restarts if restarts else [0] self.restarts = [v + 1 for v in self.restarts] self.restart_weights = weights if weights else [1] self.force_lr = force_lr if force_lr: print(f"!!Forcing the learning rate to: {force_lr}") self.warmup_steps = warmup_steps assert len(self.restarts) == len( self.restart_weights), 'restarts and their weights do not match.' super(MultiStepLR_Restart, self).__init__(optimizer, last_epoch) def get_lr(self): # Note to self: for the purposes of this trainer, "last_epoch" should read "last_step" if self.force_lr is not None: return [self.force_lr for _ in self.optimizer.param_groups] if self.last_epoch in self.restarts: if self.clear_state: self.optimizer.state = defaultdict(dict) weight = self.restart_weights[self.restarts.index(self.last_epoch)] return [group['initial_lr'] * weight for group in self.optimizer.param_groups] if self.last_epoch < self.warmup_steps: factor = 1 - (self.warmup_steps - self.last_epoch) / \ self.warmup_steps return [group['initial_lr'] * factor for group in self.optimizer.param_groups] if self.last_epoch not in self.milestones: return [group['lr'] for group in self.optimizer.param_groups] return [ group['lr'] * self.gamma**self.milestones[self.last_epoch] for group in self.optimizer.param_groups ] # Allow this scheduler to use newly appointed milestones partially through a training run.. def load_state_dict(self, s): milestones_cache = self.milestones force_lr_cache = self.force_lr super(MultiStepLR_Restart, self).load_state_dict(s) self.milestones = milestones_cache self.force_lr = force_lr_cache class CosineAnnealingLR_Restart(_LRScheduler): def __init__(self, optimizer, T_period, warmup=0, restarts=None, weights=None, eta_min=0, last_epoch=-1): self.warmup = warmup self.T_period = T_period self.T_max = self.T_period[0] # current T period self.eta_min = eta_min self.restarts = restarts if restarts else [0] self.restarts = [v + 1 for v in self.restarts] self.restart_weights = weights if weights else [1] self.last_restart = 0 assert len(self.restarts) == len( self.restart_weights), 'restarts and their weights do not match.' super(CosineAnnealingLR_Restart, self).__init__(optimizer, last_epoch) def get_lr(self): step = self.last_epoch - self.warmup if step <= 0: return self.base_lrs elif step in self.restarts: self.last_restart = step self.T_max = self.T_period[self.restarts.index(step) + 1] weight = self.restart_weights[self.restarts.index(step)] return [group['initial_lr'] * weight for group in self.optimizer.param_groups] elif (step - self.last_restart - 1 - self.T_max) % (2 * self.T_max) == 0: return [ group['lr'] + (base_lr - self.eta_min) * (1 - math.cos(math.pi / self.T_max)) / 2 for base_lr, group in zip(self.base_lrs, self.optimizer.param_groups) ] return [(1 + math.cos(math.pi * (step - self.last_restart) / self.T_max)) / (1 + math.cos(math.pi * ((step - self.last_restart) - 1) / self.T_max)) * (group['lr'] - self.eta_min) + self.eta_min for group in self.optimizer.param_groups] if __name__ == "__main__": # torch.optim.Adam optimizer = ml.Adam([torch.zeros(3, 64, 3, 3)], lr=1e-4, weight_decay=0, betas=(0.9, 0.99)) ############################## # MultiStepLR_Restart ############################## # Original lr_steps = [200000, 400000, 600000, 800000] restarts = None restart_weights = None # two lr_steps = [100000, 200000, 300000, 400000, 490000, 600000, 700000, 800000, 900000, 990000] restarts = [500000] restart_weights = [1] # four lr_steps = [ 50000, 100000, 150000, 200000, 240000, 300000, 350000, 400000, 450000, 490000, 550000, 600000, 650000, 700000, 740000, 800000, 850000, 900000, 950000, 990000 ] restarts = [250000, 500000, 750000] restart_weights = [1, 1, 1] scheduler = MultiStepLR_Restart(optimizer, lr_steps, restarts, restart_weights, gamma=0.5, clear_state=False, warmup_steps=20000) ''' ############################## # Cosine Annealing Restart ############################## ## two T_period = [500000, 500000] restarts = [500000] restart_weights = [1] ## four T_period = [200000, 100000, 200000] restarts = [200000, 300000] restart_weights = [.5, .25] scheduler = CosineAnnealingLR_Restart(optimizer, T_period, warmup=10000, eta_min=1e-8, restarts=restarts, weights=restart_weights) ''' ############################## # Draw figure ############################## N_iter = 100000 lr_l = list(range(N_iter)) for i in range(N_iter): scheduler.step() current_lr = optimizer.param_groups[0]['lr'] lr_l[i] = current_lr import matplotlib as mpl import matplotlib.ticker as mtick from matplotlib import pyplot as plt mpl.style.use('default') import seaborn seaborn.set(style='whitegrid') seaborn.set_context('paper') plt.figure(1) plt.subplot(111) plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0)) plt.title('Title', fontsize=16, color='k') plt.plot(list(range(N_iter)), lr_l, linewidth=1.5, label='learning rate scheme') legend = plt.legend(loc='upper right', shadow=False) ax = plt.gca() labels = ax.get_xticks().tolist() for k, v in enumerate(labels): labels[k] = str(int(v / 1000)) + 'K' ax.set_xticklabels(labels) ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e')) ax.set_ylabel('Learning rate') ax.set_xlabel('Iteration') fig = plt.gcf() plt.show()