import torch from torch import nn from switched_conv import BareConvSwitch, compute_attention_specificity import torch.nn.functional as F import functools from models.archs.arch_util import initialize_weights from switched_conv_util import save_attention_to_image class ConvBnLelu(nn.Module): def __init__(self, filters_in, filters_out, kernel_size=3, stride=1, lelu=True, bn=True, bias=True): super(ConvBnLelu, self).__init__() padding_map = {1: 0, 3: 1, 5: 2, 7: 3} assert kernel_size in padding_map.keys() self.conv = nn.Conv2d(filters_in, filters_out, kernel_size, stride, padding_map[kernel_size], bias=bias) if bn: self.bn = nn.BatchNorm2d(filters_out) else: self.bn = None if lelu: self.lelu = nn.LeakyReLU(negative_slope=.1) else: self.lelu = None def forward(self, x): x = self.conv(x) if self.bn: x = self.bn(x) if self.lelu: return self.lelu(x) else: return x class ResidualBranch(nn.Module): def __init__(self, filters_in, filters_mid, filters_out, kernel_size, depth, bn=False): assert depth >= 2 super(ResidualBranch, self).__init__() self.noise_scale = nn.Parameter(torch.full((1,), fill_value=.01)) self.bnconvs = nn.ModuleList([ConvBnLelu(filters_in, filters_mid, kernel_size, bn=bn, bias=False)] + [ConvBnLelu(filters_mid, filters_mid, kernel_size, bn=bn, bias=False) for i in range(depth-2)] + [ConvBnLelu(filters_mid, filters_out, kernel_size, lelu=False, bn=False, bias=False)]) self.scale = nn.Parameter(torch.ones(1)) self.bias = nn.Parameter(torch.zeros(1)) def forward(self, x, noise=None): if noise is not None: noise = noise * self.noise_scale x = x + noise for m in self.bnconvs: x = m.forward(x) return x * self.scale + self.bias # VGG-style layer with Conv(stride2)->BN->Activation->Conv->BN->Activation # Doubles the input filter count. class HalvingProcessingBlock(nn.Module): def __init__(self, filters): super(HalvingProcessingBlock, self).__init__() self.bnconv1 = ConvBnLelu(filters, filters * 2, stride=2, bn=False, bias=False) self.bnconv2 = ConvBnLelu(filters * 2, filters * 2, bn=True, bias=False) def forward(self, x): x = self.bnconv1(x) return self.bnconv2(x) # Creates a nested series of convolutional blocks. Each block processes the input data in-place and adds # filter_growth filters. Return is (nn.Sequential, ending_filters) def create_sequential_growing_processing_block(filters_init, filter_growth, num_convs): convs = [] current_filters = filters_init for i in range(num_convs): convs.append(ConvBnRelu(current_filters, current_filters + filter_growth, bn=True, bias=False)) current_filters += filter_growth return nn.Sequential(*convs), current_filters class SwitchComputer(nn.Module): def __init__(self, channels_in, filters, growth, transform_block, transform_count, reduction_blocks, processing_blocks=0, init_temp=20, enable_negative_transforms=False, add_scalable_noise_to_transforms=False): super(SwitchComputer, self).__init__() self.enable_negative_transforms = enable_negative_transforms self.filter_conv = ConvBnLelu(channels_in, filters) self.reduction_blocks = nn.ModuleList([HalvingProcessingBlock(filters * 2 ** i) for i in range(reduction_blocks)]) final_filters = filters * 2 ** reduction_blocks self.processing_blocks, final_filters = create_sequential_growing_processing_block(final_filters, growth, processing_blocks) proc_block_filters = max(final_filters // 2, transform_count) self.proc_switch_conv = ConvBnLelu(final_filters, proc_block_filters, bn=False) tc = transform_count if self.enable_negative_transforms: tc = transform_count * 2 self.final_switch_conv = nn.Conv2d(proc_block_filters, tc, 1, 1, 0) self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)]) self.add_noise = add_scalable_noise_to_transforms # And the switch itself, including learned scalars self.switch = BareConvSwitch(initial_temperature=init_temp) self.scale = nn.Parameter(torch.ones(1)) self.bias = nn.Parameter(torch.zeros(1)) def forward(self, x, output_attention_weights=False): if self.add_noise: rand_feature = torch.randn_like(x) xformed = [t.forward(x, rand_feature) for t in self.transforms] else: xformed = [t.forward(x) for t in self.transforms] if self.enable_negative_transforms: xformed.extend([-t for t in xformed]) multiplexer = self.filter_conv(x) for block in self.reduction_blocks: multiplexer = block.forward(multiplexer) for block in self.processing_blocks: multiplexer = block.forward(multiplexer) multiplexer = self.proc_switch_conv(multiplexer) multiplexer = self.final_switch_conv.forward(multiplexer) # Interpolate the multiplexer across the entire shape of the image. multiplexer = F.interpolate(multiplexer, size=x.shape[2:], mode='nearest') outputs, attention = self.switch(xformed, multiplexer, True) outputs = outputs * self.scale + self.bias if output_attention_weights: return outputs, attention else: return outputs def set_temperature(self, temp): self.switch.set_attention_temperature(temp) class ConfigurableSwitchedResidualGenerator(nn.Module): def __init__(self, switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers, trans_filters_mid, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1, heightened_final_step=50000, upsample_factor=1, enable_negative_transforms=False, add_scalable_noise_to_transforms=False): super(ConfigurableSwitchedResidualGenerator, self).__init__() switches = [] for filters, growth, sw_reduce, sw_proc, trans_count, kernel, layers, mid_filters in zip(switch_filters, switch_growths, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers, trans_filters_mid): switches.append(SwitchComputer(3, filters, growth, functools.partial(ResidualBranch, 3, mid_filters, 3, kernel_size=kernel, depth=layers), trans_count, sw_reduce, sw_proc, initial_temp, enable_negative_transforms=enable_negative_transforms, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms)) initialize_weights(switches, 1) # Initialize the transforms with a lesser weight, since they are repeatedly added on to the resultant image. initialize_weights([s.transforms for s in switches], .2 / len(switches)) self.switches = nn.ModuleList(switches) self.transformation_counts = trans_counts self.init_temperature = initial_temp self.final_temperature_step = final_temperature_step self.heightened_temp_min = heightened_temp_min self.heightened_final_step = heightened_final_step self.attentions = None self.upsample_factor = upsample_factor def forward(self, x): # This network is entirely a "repair" network and operates on full-resolution images. Upsample first if that # is called for, then repair. if self.upsample_factor > 1: x = F.interpolate(x, scale_factor=self.upsample_factor, mode="nearest") self.attentions = [] for i, sw in enumerate(self.switches): sw_out, att = sw.forward(x, True) x = x + sw_out self.attentions.append(att) return x, def set_temperature(self, temp): [sw.set_temperature(temp) for sw in self.switches] def update_for_step(self, step, experiments_path='.'): if self.attentions: temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step)) if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1: # Once the temperature passes (1) it enters an inverted curve to match the linear curve from above. # without this, the attention specificity "spikes" incredibly fast in the last few iterations. h_steps_total = self.heightened_final_step - self.final_temperature_step h_steps_current = min(step - self.final_temperature_step, h_steps_total) # The "gap" will represent the steps that need to be traveled as a linear function. h_gap = 1 / self.heightened_temp_min temp = h_gap * h_steps_current / h_steps_total # Invert temperature to represent reality on this side of the curve temp = 1 / temp self.set_temperature(temp) if step % 50 == 0: [save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,)) for i in range(len(self.switches))] def get_debug_values(self, step): temp = self.switches[0].switch.temperature mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions] means = [i[0] for i in mean_hists] hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists] val = {"switch_temperature": temp} for i in range(len(means)): val["switch_%i_specificity" % (i,)] = means[i] val["switch_%i_histogram" % (i,)] = hists[i] return val