import copy import functools import os from multiprocessing.pool import ThreadPool import torch from train import Trainer from utils import options as option import collections.abc def deep_update(d, u): for k, v in u.items(): if isinstance(v, collections.abc.Mapping): d[k] = deep_update(d.get(k, {}), v) else: d[k] = v return d def launch_trainer(opt, opt_path, rank): os.environ['CUDA_VISIBLE_DEVICES'] = str(rank) print('export CUDA_VISIBLE_DEVICES=' + str(rank)) trainer = Trainer() opt['dist'] = False trainer.rank = -1 trainer.init(opt_path, opt, 'none') trainer.do_training() if __name__ == '__main__': """ Ad-hoc script (hard coded; no command-line parameters) that spawns multiple separate trainers from a single options file, with a hard-coded set of modifications. """ base_opt = '../experiments/train_diffusion_tts6.yml' modifications = { 'baseline': {}, 'only_conv': {'networks': {'generator': {'kwargs': {'cond_transformer_depth': 4, 'mid_transformer_depth': 1}}}}, 'intermediary_attention': {'networks': {'generator': {'kwargs': {'attention_resolutions': [32,64], 'num_res_blocks': [2, 2, 2, 2, 2, 2, 2]}}}}, 'more_resblocks': {'networks': {'generator': {'kwargs': {'num_res_blocks': [3, 3, 3, 3, 3, 3, 2]}}}}, 'less_resblocks': {'networks': {'generator': {'kwargs': {'num_res_blocks': [1, 1, 1, 1, 1, 1, 1]}}}}, 'wider': {'networks': {'generator': {'kwargs': {'channel_mult': [1,2,4,6,8,8,8]}}}}, 'inject_every_layer': {'networks': {'generator': {'kwargs': {'token_conditioning_resolutions': [1,2,4,8,16,32,64]}}}}, 'cosine_diffusion': {'steps': {'generator': {'injectors': {'diffusion': {'beta_schedule': {'schedule_name': 'cosine'}}}}}}, } opt = option.parse(base_opt, is_train=True) all_opts = [] for i, (mod, mod_dict) in enumerate(modifications.items()): nd = copy.deepcopy(opt) deep_update(nd, mod_dict) nd['name'] = f'{nd["name"]}_{mod}' nd['wandb_run_name'] = mod base_path = nd['path']['log'] for k, p in nd['path'].items(): if isinstance(p, str) and base_path in p: nd['path'][k] = p.replace(base_path, f'{base_path}\\{mod}') all_opts.append(nd) for i in range(1,len(modifications)): pid = os.fork() if pid == 0: rank = i break else: rank = 0 launch_trainer(all_opts[i], base_opt, rank)