DL-Art-School/dlas/data/combined_dataset.py

36 lines
1.1 KiB
Python

import torch
from dlas.data import create_dataset
# Simple composite dataset that combines multiple other datasets.
# Assumes that the datasets output dicts.
class CombinedDataset(torch.utils.data.Dataset):
def __init__(self, opt):
self.datasets = {}
for k, v in opt.items():
if not isinstance(v, dict):
continue
# Scale&phase gets injected by options.py..
v['scale'] = opt['scale']
v['phase'] = opt['phase']
self.datasets[k] = create_dataset(v)
self.items_fetched = 0
def __getitem__(self, i):
self.items_fetched += 1
output = {}
for name, dataset in self.datasets.items():
prefix = ""
# 'default' dataset gets no prefix, other ones get `key_`
if name != 'default':
prefix = name + "_"
data = dataset[i % len(dataset)]
for k, v in data.items():
output[prefix + k] = v
return output
def __len__(self):
return max(len(d) for d in self.datasets.values())