DL-Art-School/dlas/data/data_sampler.py

70 lines
2.3 KiB
Python

"""
Modified from torch.utils.data.distributed.DistributedSampler
Support enlarging the dataset for *iteration-oriented* training, for saving time when restart the
dataloader after each epoch
"""
import math
import torch
import torch.distributed as dist
from torch.utils.data.sampler import Sampler
class DistIterSampler(Sampler):
"""Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Arguments:
dataset: Dataset used for sampling.
num_replicas (optional): Number of processes participating in
distributed training.
rank (optional): Rank of the current process within num_replicas.
"""
def __init__(self, dataset, num_replicas=None, rank=None, ratio=100):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError(
"Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError(
"Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.num_samples = int(
math.ceil(len(self.dataset) * ratio / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
def __iter__(self):
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(self.total_size, generator=g).tolist()
dsize = len(self.dataset)
indices = [v % dsize for v in indices]
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch