forked from mrq/DL-Art-School
47 lines
1.7 KiB
Python
47 lines
1.7 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class ZeroPadDictCollate():
|
|
"""
|
|
Given a list of dictionary outputs with torch.Tensors from a Dataset, iterates through each one, finds the longest
|
|
tensor, and zero pads all the other tensors together.
|
|
"""
|
|
|
|
def collate_tensors(self, batch, key):
|
|
result = []
|
|
largest_dims = [0 for _ in range(len(batch[0][key].shape))]
|
|
for elem in batch:
|
|
result.append(elem[key])
|
|
largest_dims = [max(current_largest, new_consideration)
|
|
for current_largest, new_consideration in zip(largest_dims, elem[key].shape)]
|
|
# Now pad each tensor by the largest dimension.
|
|
for i in range(len(result)):
|
|
padding_tuple = ()
|
|
for d in range(len(largest_dims)):
|
|
padding_needed = largest_dims[d] - result[i].shape[d]
|
|
assert padding_needed >= 0
|
|
padding_tuple = (0, padding_needed) + padding_tuple
|
|
result[i] = F.pad(result[i], padding_tuple)
|
|
|
|
return torch.stack(result, dim=0)
|
|
|
|
def collate_into_list(self, batch, key):
|
|
result = []
|
|
for elem in batch:
|
|
result.append(elem[key])
|
|
return result
|
|
|
|
def __call__(self, batch):
|
|
first_dict = batch[0]
|
|
collated = {}
|
|
for key in first_dict.keys():
|
|
if isinstance(first_dict[key], torch.Tensor):
|
|
if len(first_dict[key].shape) > 0:
|
|
collated[key] = self.collate_tensors(batch, key)
|
|
else:
|
|
collated[key] = torch.stack([b[key] for b in batch])
|
|
else:
|
|
collated[key] = self.collate_into_list(batch, key)
|
|
return collated
|