DL-Art-School/dlas/models/clip/text_voice_clip.py

212 lines
7.8 KiB
Python

from random import randint
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
from x_transformers import Encoder
import dlas.torch_intermediary as ml
from dlas.models.audio.tts.unet_diffusion_tts7 import \
CheckpointedXTransformerEncoder
from dlas.models.lucidrains.dalle.transformer import Transformer
from dlas.trainer.networks import register_model
from dlas.utils.util import opt_get
def exists(val):
return val is not None
def masked_mean(t, mask, dim=1):
t = t.masked_fill(~mask[:, :, None], 0.)
return t.sum(dim=1) / mask.sum(dim=1)[..., None]
class VoiceCLIP(nn.Module):
"""
CLIP model retrofitted for performing contrastive evaluation between tokenized audio data and the corresponding
transcribed text.
Originally from https://github.com/lucidrains/DALLE-pytorch/blob/main/dalle_pytorch/dalle_pytorch.py
"""
def __init__(
self,
*,
dim_text=512,
dim_speech=512,
dim_latent=512,
num_text_tokens=256,
text_enc_depth=6,
text_seq_len=120,
text_heads=8,
num_speech_tokens=8192,
speech_enc_depth=6,
speech_heads=8,
speech_seq_len=250,
text_mask_percentage=0,
voice_mask_percentage=0,
wav_token_compression=1024,
use_xformers=False,
clip_mels=False,
# Default is approximately .5sec with default mel specs.
min_mel_size=10,
distributed_collect=False,
):
super().__init__()
# nn.Embedding
self.text_emb = ml.Embedding(num_text_tokens, dim_text)
self.to_text_latent = ml.Linear(dim_text, dim_latent, bias=False)
# nn.Embedding
self.speech_emb = ml.Embedding(num_speech_tokens, dim_speech)
self.to_speech_latent = ml.Linear(dim_speech, dim_latent, bias=False)
if use_xformers:
self.text_transformer = CheckpointedXTransformerEncoder(
needs_permute=False,
exit_permute=False,
max_seq_len=-1,
attn_layers=Encoder(
dim=dim_text,
depth=text_enc_depth,
heads=text_heads,
ff_dropout=.1,
ff_mult=2,
attn_dropout=.1,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
))
self.speech_transformer = CheckpointedXTransformerEncoder(
needs_permute=False,
exit_permute=False,
max_seq_len=-1,
attn_layers=Encoder(
dim=dim_speech,
depth=speech_enc_depth,
heads=speech_heads,
ff_dropout=.1,
ff_mult=2,
attn_dropout=.1,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
))
else:
self.text_transformer = Transformer(causal=False, seq_len=text_seq_len, dim=dim_text, depth=text_enc_depth,
heads=text_heads)
self.speech_transformer = Transformer(causal=False, seq_len=speech_seq_len, dim=dim_speech,
depth=speech_enc_depth, heads=speech_heads)
self.temperature = nn.Parameter(torch.tensor(1.))
self.text_mask_percentage = text_mask_percentage
self.voice_mask_percentage = voice_mask_percentage
self.wav_token_compression = wav_token_compression
self.xformers = use_xformers
self.clip_mels = clip_mels
self.min_mel_size = min_mel_size
self.distributed_collect = distributed_collect
if not use_xformers:
# nn.Embedding
self.text_pos_emb = ml.Embedding(text_seq_len, dim_text)
# nn.Embedding
self.speech_pos_emb = ml.Embedding(num_speech_tokens, dim_speech)
def embed_text(self, text):
text_mask = torch.ones_like(text.float()).bool()
text_emb = self.text_emb(text)
enc_text = self.text_transformer(text_emb, mask=text_mask)
text_latents = masked_mean(enc_text, text_mask, dim=1)
text_latents = self.to_text_latent(text_latents)
return text_latents
def forward(
self,
text,
speech_tokens,
return_loss=False
):
b, device = text.shape[0], text.device
if self.training:
if self.clip_mels:
margin = speech_tokens.shape[-1] - self.min_mel_size
speech_tokens = speech_tokens[:,
:self.min_mel_size+randint(0, margin)]
# Disable voice masking in this case.
voice_mask = torch.ones_like(speech_tokens.float()).bool()
else:
voice_mask = torch.rand_like(
speech_tokens.float()) > self.voice_mask_percentage
text_mask = torch.rand_like(
text.float()) > self.text_mask_percentage
else:
text_mask = torch.ones_like(text.float()).bool()
voice_mask = torch.ones_like(speech_tokens.float()).bool()
text_emb = self.text_emb(text)
speech_emb = self.speech_emb(speech_tokens)
if not self.xformers:
text_emb += self.text_pos_emb(
torch.arange(text.shape[1], device=device))
speech_emb += self.speech_pos_emb(
torch.arange(speech_emb.shape[1], device=device))
enc_text = self.text_transformer(text_emb, mask=text_mask)
enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)
text_latents = masked_mean(enc_text, text_mask, dim=1)
speech_latents = masked_mean(enc_speech, voice_mask, dim=1)
text_latents = self.to_text_latent(text_latents)
speech_latents = self.to_speech_latent(speech_latents)
if self.distributed_collect:
collective = [torch.zeros_like(text_latents) for _ in range(
torch.distributed.get_world_size())]
torch.distributed.all_gather(collective, text_latents)
# For gradient propagation.
collective[torch.distributed.get_rank()] = text_latents
text_latents = torch.cat(collective, dim=0)
collective = [torch.zeros_like(speech_latents) for _ in range(
torch.distributed.get_world_size())]
# For gradient propagation.
collective[torch.distributed.get_rank()] = speech_latents
torch.distributed.all_gather(collective, speech_latents)
speech_latents = torch.cat(collective, dim=0)
b = text_latents.shape[0]
text_latents, speech_latents = map(lambda t: F.normalize(
t, p=2, dim=-1), (text_latents, speech_latents))
temp = self.temperature.exp()
if not return_loss:
sim = einsum('n d, n d -> n', text_latents, speech_latents) * temp
return sim
sim = einsum('i d, j d -> i j', text_latents, speech_latents) * temp
labels = torch.arange(b, device=device)
loss = (F.cross_entropy(sim, labels) +
F.cross_entropy(sim.t(), labels)) / 2
return loss
@register_model
def register_voice_clip(opt_net, opt):
return VoiceCLIP(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
clip = VoiceCLIP(text_mask_percentage=.2,
voice_mask_percentage=.2, use_xformers=True)
clip(torch.randint(0, 256, (2, 120)),
torch.randint(0, 8192, (2, 250)),
return_loss=True)
nonloss = clip(torch.randint(0, 256, (2, 120)),
torch.randint(0, 8192, (2, 250)),
return_loss=False)
print(nonloss.shape)