forked from mrq/DL-Art-School
96 lines
3.4 KiB
Python
96 lines
3.4 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
import dlas.torch_intermediary as ml
|
|
from dlas.models.arch_util import ResBlock
|
|
from dlas.models.lucidrains.x_transformers import Encoder
|
|
from dlas.trainer.networks import register_model
|
|
|
|
|
|
class VitLatent(nn.Module):
|
|
def __init__(self, top_dim, hidden_dim, depth, dropout=.1):
|
|
super().__init__()
|
|
self.upper = nn.Sequential(nn.Conv2d(3, top_dim, kernel_size=7, padding=3, stride=2),
|
|
ResBlock(top_dim, use_conv=True,
|
|
dropout=dropout),
|
|
ResBlock(top_dim, out_channels=top_dim*2,
|
|
down=True, use_conv=True, dropout=dropout),
|
|
ResBlock(top_dim*2, use_conv=True,
|
|
dropout=dropout),
|
|
ResBlock(top_dim*2, out_channels=top_dim*4,
|
|
down=True, use_conv=True, dropout=dropout),
|
|
ResBlock(top_dim*4, use_conv=True,
|
|
dropout=dropout),
|
|
ResBlock(top_dim*4, out_channels=hidden_dim,
|
|
down=True, use_conv=True, dropout=dropout),
|
|
nn.GroupNorm(8, hidden_dim))
|
|
self.encoder = Encoder(
|
|
dim=hidden_dim,
|
|
depth=depth,
|
|
heads=hidden_dim//64,
|
|
ff_dropout=dropout,
|
|
attn_dropout=dropout,
|
|
use_rmsnorm=True,
|
|
ff_glu=True,
|
|
rotary_pos_emb=True,
|
|
ff_mult=2,
|
|
do_checkpointing=True
|
|
)
|
|
|
|
self.mlp = nn.Sequential(ml.Linear(hidden_dim, hidden_dim*2),
|
|
nn.BatchNorm1d(hidden_dim*2),
|
|
nn.ReLU(inplace=True),
|
|
ml.Linear(hidden_dim*2, hidden_dim))
|
|
|
|
def provide_ema(self, ema):
|
|
self.ema = ema
|
|
|
|
def project(self, x):
|
|
h = self.upper(x)
|
|
h = torch.flatten(h, 2).permute(0, 2, 1)
|
|
h = self.encoder(h)[:, 0]
|
|
h_norm = F.normalize(h)
|
|
return h_norm
|
|
|
|
def forward(self, x1, x2):
|
|
h1 = self.project(x1)
|
|
# p1 = self.mlp(h1)
|
|
h2 = self.project(x2)
|
|
# p2 = self.mlp(h2)
|
|
with torch.no_grad():
|
|
he1 = self.ema.project(x1)
|
|
he2 = self.ema.project(x2)
|
|
|
|
def csim(h1, h2):
|
|
b = x1.shape[0]
|
|
sim = F.cosine_similarity(
|
|
h1.unsqueeze(0), h2.unsqueeze(1).detach(), 2)
|
|
eye = torch.eye(b, device=x1.device)
|
|
neye = eye != 1
|
|
return -(sim*eye).sum()/b, (sim*neye).sum()/(b**2-b)
|
|
|
|
pos, neg = csim(h1, he2)
|
|
pos2, neg2 = csim(h2, he1)
|
|
return (pos+pos2)/2, (neg+neg2)/2
|
|
|
|
def get_grad_norm_parameter_groups(self):
|
|
return {
|
|
'upper': list(self.upper.parameters()),
|
|
'encoder': list(self.encoder.parameters()),
|
|
'mlp': list(self.mlp.parameters()),
|
|
}
|
|
|
|
|
|
@register_model
|
|
def register_vit_latent(opt_net, opt):
|
|
return VitLatent(**opt_net['kwargs'])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
net = VitLatent(128, 1024, 8)
|
|
net.provide_ema(net)
|
|
x1 = torch.randn(2, 3, 244, 244)
|
|
x2 = torch.randn(2, 3, 244, 244)
|
|
net(x1, x2)
|