forked from mrq/DL-Art-School
75 lines
2.3 KiB
Python
75 lines
2.3 KiB
Python
from scipy.io import wavfile
|
|
from spleeter.separator import Separator
|
|
from tqdm import tqdm
|
|
|
|
'''
|
|
Uses a model configuration to load a classifier and iterate through a dataset, binning each class into it's own
|
|
folder.
|
|
'''
|
|
|
|
import os
|
|
import os.path as osp
|
|
|
|
import numpy as np
|
|
from spleeter.audio.adapter import AudioAdapter
|
|
|
|
from dlas.data.util import find_audio_files
|
|
|
|
# Uses spleeter_utils to divide audio clips into one of two bins:
|
|
# 1. Audio has little to no background noise, saved to "output_dir"
|
|
# 2. Audio has a lot of background noise, bg noise split off and saved to "output_dir_bg"
|
|
if __name__ == '__main__':
|
|
src_dir = 'F:\\split\\joe_rogan'
|
|
output_dir = 'F:\\split\\cleaned\\joe_rogan'
|
|
output_dir_bg = 'F:\\split\\background-noise\\joe_rogan'
|
|
output_sample_rate = 22050
|
|
|
|
os.makedirs(output_dir_bg, exist_ok=True)
|
|
os.makedirs(output_dir, exist_ok=True)
|
|
|
|
audio_loader = AudioAdapter.default()
|
|
separator = Separator('spleeter:2stems')
|
|
files = find_audio_files(src_dir, include_nonwav=True)
|
|
for e, file in enumerate(tqdm(files)):
|
|
# if e < 406500:
|
|
# continue
|
|
file_basis = osp.relpath(file, src_dir)\
|
|
.replace('/', '_')\
|
|
.replace('\\', '_')\
|
|
.replace('.', '_')\
|
|
.replace(' ', '_')\
|
|
.replace('!', '_')\
|
|
.replace(',', '_')
|
|
if len(file_basis) > 100:
|
|
file_basis = file_basis[:100]
|
|
try:
|
|
wave, sample_rate = audio_loader.load(
|
|
file, sample_rate=output_sample_rate)
|
|
except:
|
|
print(f"Error with {file}")
|
|
continue
|
|
|
|
sep = separator.separate(wave)
|
|
vocals = sep['vocals']
|
|
bg = sep['accompaniment']
|
|
vmax = np.abs(vocals).mean()
|
|
bmax = np.abs(bg).mean()
|
|
|
|
# Only output to the "good" sample dir if the ratio of background noise to vocal noise is high enough.
|
|
ratio = vmax / (bmax+.0000001)
|
|
if ratio >= 25: # These values were derived empirically
|
|
od = output_dir
|
|
os = wave
|
|
elif ratio <= 1:
|
|
od = output_dir_bg
|
|
os = bg
|
|
else:
|
|
continue
|
|
|
|
# Strip out channels.
|
|
if len(os.shape) > 1:
|
|
os = os[:, 0] # Just use the first channel.
|
|
|
|
wavfile.write(
|
|
osp.join(od, file_basis, f'{e}.wav'), output_sample_rate, os)
|