forked from mrq/DL-Art-School
100 lines
3.7 KiB
Python
100 lines
3.7 KiB
Python
import argparse
|
|
import logging
|
|
import os.path as osp
|
|
import random
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torchvision
|
|
from scipy.io import wavfile
|
|
from tqdm import tqdm
|
|
|
|
import dlas.utils.options as option
|
|
import dlas.utils.util as util
|
|
from dlas.data import create_dataloader, create_dataset
|
|
from dlas.models.audio.vocoders.waveglow import Denoiser
|
|
from dlas.trainer.ExtensibleTrainer import ExtensibleTrainer
|
|
|
|
|
|
def forward_pass(model, denoiser, data, output_dir, opt, b):
|
|
with torch.no_grad():
|
|
model.feed_data(data, 0)
|
|
model.test()
|
|
|
|
pred_waveforms = model.eval_state[opt['eval']['output_state']][0]
|
|
pred_waveforms = denoiser(pred_waveforms)
|
|
gt = 'ground_truth' in opt['eval'].keys()
|
|
if gt:
|
|
ground_truth_waveforms = model.eval_state[opt['eval']
|
|
['ground_truth']][0]
|
|
ground_truth_waveforms = denoiser(ground_truth_waveforms)
|
|
for i in range(pred_waveforms.shape[0]):
|
|
# Output predicted mels and waveforms.
|
|
pred_mel = model.eval_state[opt['eval']['pred_mel']][0][i].unsqueeze(0)
|
|
pred_mel = ((pred_mel - pred_mel.mean()) /
|
|
max(abs(pred_mel.min()), pred_mel.max())).unsqueeze(1)
|
|
torchvision.utils.save_image(pred_mel, osp.join(
|
|
output_dir, f'{b}_{i}_pred_mel.png'))
|
|
audio = pred_waveforms[i][0].cpu().numpy()
|
|
wavfile.write(osp.join(output_dir, f'{b}_{i}.wav'), 22050, audio)
|
|
|
|
if gt:
|
|
gt_mel = model.eval_state[opt['eval']
|
|
['ground_truth_mel']][0][i].unsqueeze(0)
|
|
gt_mel = ((gt_mel - gt_mel.mean()) /
|
|
max(abs(gt_mel.min()), gt_mel.max())).unsqueeze(1)
|
|
torchvision.utils.save_image(
|
|
gt_mel, osp.join(output_dir, f'{b}_{i}_gt_mel.png'))
|
|
audio = ground_truth_waveforms[i][0].cpu().numpy()
|
|
wavfile.write(
|
|
osp.join(output_dir, f'{b}_{i}_ground_truth.wav'), 22050, audio)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# Set seeds
|
|
torch.manual_seed(5555)
|
|
random.seed(5555)
|
|
np.random.seed(5555)
|
|
|
|
# options
|
|
torch.backends.cudnn.benchmark = True
|
|
want_metrics = False
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-opt', type=str, help='Path to options YAML file.',
|
|
default='../options/test_lrdvae_audio_clips.yml')
|
|
opt = option.parse(parser.parse_args().opt, is_train=False)
|
|
opt = option.dict_to_nonedict(opt)
|
|
utils.util.loaded_options = opt
|
|
|
|
util.mkdirs(
|
|
(path for key, path in opt['path'].items()
|
|
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
|
|
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
|
|
screen=True, tofile=True)
|
|
logger = logging.getLogger('base')
|
|
logger.info(option.dict2str(opt))
|
|
|
|
test_loaders = []
|
|
for phase, dataset_opt in sorted(opt['datasets'].items()):
|
|
test_set, collate_fn = create_dataset(dataset_opt, return_collate=True)
|
|
test_loader = create_dataloader(
|
|
test_set, dataset_opt, collate_fn=collate_fn)
|
|
logger.info('Number of test texts in [{:s}]: {:d}'.format(
|
|
dataset_opt['name'], len(test_set)))
|
|
test_loaders.append(test_loader)
|
|
|
|
model = ExtensibleTrainer(opt)
|
|
|
|
# Pretty hacky, need to figure out a better way to integrate this.
|
|
denoiser = Denoiser(model.networks['waveglow'].module)
|
|
|
|
batch = 0
|
|
for test_loader in test_loaders:
|
|
dataset_dir = opt['path']['results_root']
|
|
util.mkdir(dataset_dir)
|
|
|
|
tq = tqdm(test_loader)
|
|
for data in tq:
|
|
forward_pass(model, denoiser, data, dataset_dir, opt, batch)
|
|
batch += 1
|