DL-Art-School/dlas/scripts/audio/word_error_rate.py

45 lines
1.5 KiB
Python

import Levenshtein
import torch
from jiwer import compute_measures, wer
from tqdm import tqdm
from dlas.data.audio.voice_tokenizer import VoiceBpeTokenizer
def load_truths(file):
niltok = VoiceBpeTokenizer(None)
out = {}
with open(file, 'r', encoding='utf-8') as f:
for line in f.readlines():
spl = line.split('|')
if len(spl) != 2:
print(spl)
continue
path, truth = spl
# path = path.replace('wav/', '')
# This preprocesses the truth data in the same way that training data is processed: removing punctuation, all lowercase, removing unnecessary
# whitespace, and applying "english cleaners", which convert words like "mrs" to "missus" and such.
truth = niltok.preprocess_text(truth)
out[path] = truth
return out
if __name__ == '__main__':
inference_tsv = 'results.tsv'
libri_base = 'y:\\bigasr_dataset/librispeech/test_clean/test_clean.txt'
# Pre-process truth values
truths = load_truths(libri_base)
niltok = VoiceBpeTokenizer(None)
ground_truths = []
hypotheses = []
with open(inference_tsv, 'r') as tsv_file:
tsv = tsv_file.read().splitlines()
for line in tqdm(tsv):
sentence_pred, wav = line.split('\t')
hypotheses.append(niltok.preprocess_text(sentence_pred))
ground_truths.append(truths[wav])
wer = wer(ground_truths, hypotheses)*100
print(f"WER: {wer}")