forked from mrq/DL-Art-School
259 lines
8.8 KiB
Python
259 lines
8.8 KiB
Python
import os
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torchvision
|
|
from PIL import Image
|
|
from torch.utils.data import DataLoader
|
|
from torchvision.transforms import Normalize, ToTensor
|
|
from tqdm import tqdm
|
|
|
|
from dlas.data.images.image_folder_dataset import ImageFolderDataset
|
|
from dlas.models.segformer.segformer import Segformer
|
|
# Computes the structural euclidean distance between [x,y]. "Structural" here means the [h,w] dimensions are preserved
|
|
# and the distance is computed across the channel dimension.
|
|
from dlas.utils.kmeans import kmeans, kmeans_predict
|
|
from dlas.utils.options import dict_to_nonedict
|
|
|
|
|
|
def structural_euc_dist(x, y):
|
|
diff = torch.square(x - y)
|
|
sum = torch.sum(diff, dim=-1)
|
|
return torch.sqrt(sum)
|
|
|
|
|
|
def cosine_similarity(x, y):
|
|
x = norm(x)
|
|
y = norm(y)
|
|
# probably better to just use this class to perform the calc. Just left this here to remind myself.
|
|
return -nn.CosineSimilarity()(x, y)
|
|
|
|
|
|
def key_value_difference(x, y):
|
|
x = F.normalize(x, dim=-1, p=2)
|
|
y = F.normalize(y, dim=-1, p=2)
|
|
return 2 - 2 * (x * y).sum(dim=-1)
|
|
|
|
|
|
def norm(x):
|
|
sh = x.shape
|
|
sh_r = tuple([sh[i] if i != len(sh)-1 else 1 for i in range(len(sh))])
|
|
return (x - torch.mean(x, dim=-1).reshape(sh_r)) / torch.std(x, dim=-1).reshape(sh_r)
|
|
|
|
|
|
def im_norm(x):
|
|
return (((x - torch.mean(x, dim=(2, 3)).reshape(-1, 1, 1, 1)) / torch.std(x, dim=(2, 3)).reshape(-1, 1, 1, 1)) * .5) + .5
|
|
|
|
|
|
def get_image_folder_dataloader(batch_size, num_workers, target_size=224, shuffle=True):
|
|
dataset_opt = dict_to_nonedict({
|
|
'name': 'amalgam',
|
|
# 'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\pn_coven\\cropped2'],
|
|
# 'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_1024_square_with_new'],
|
|
# 'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_256_tiled_filtered_flattened'],
|
|
# 'paths': ['F:\\4k6k\\datasets\\ns_images\\imagesets\\1024_test'],
|
|
'paths': ['E:\\4k6k\\datasets\\ns_images\\imagesets\\imageset_256_full'],
|
|
'weights': [1],
|
|
'target_size': target_size,
|
|
'force_multiple': 32,
|
|
'normalize': 'imagenet',
|
|
'scale': 1
|
|
})
|
|
dataset = ImageFolderDataset(dataset_opt)
|
|
return DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=shuffle)
|
|
|
|
|
|
def _find_layer(net, layer_name):
|
|
if type(layer_name) == str:
|
|
modules = dict([*net.named_modules()])
|
|
return modules.get(layer_name, None)
|
|
elif type(layer_name) == int:
|
|
children = [*net.children()]
|
|
return children[layer_name]
|
|
return None
|
|
|
|
|
|
layer_hooked_value = None
|
|
|
|
|
|
def _hook(_, __, output):
|
|
global layer_hooked_value
|
|
layer_hooked_value = output
|
|
|
|
|
|
def register_hook(net, layer_name):
|
|
layer = _find_layer(net, layer_name)
|
|
assert layer is not None, f'hidden layer ({self.layer}) not found'
|
|
layer.register_forward_hook(_hook)
|
|
|
|
|
|
def get_latent_for_img(model, img, pos):
|
|
img_t = ToTensor()(Image.open(img)).to('cuda')[:3]
|
|
img_t = Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5),
|
|
inplace=True)(img_t).unsqueeze(0)
|
|
_, _, h, w = img_t.shape
|
|
# Center crop img_t and resize to 224.
|
|
d = min(h, w)
|
|
dh, dw = (h-d)//2, (w-d)//2
|
|
if dw != 0:
|
|
img_t = img_t[:, :, :, dw:-dw]
|
|
pos[1] = pos[1]-dw
|
|
elif dh != 0:
|
|
img_t = img_t[:, :, dh:-dh, :]
|
|
pos[0] = pos[0]-dh
|
|
scale = 224 / img_t.shape[-1]
|
|
pos = (pos * scale).long()
|
|
assert (pos.min() >= 0 and pos.max() < 224)
|
|
img_t = img_t[:, :3, :, :]
|
|
img_t = torch.nn.functional.interpolate(
|
|
img_t, size=(224, 224), mode="area")
|
|
latent = model(img=img_t, pos=pos)
|
|
return latent
|
|
|
|
|
|
def produce_latent_dict(model):
|
|
batch_size = 32
|
|
num_workers = 4
|
|
dataloader = get_image_folder_dataloader(batch_size, num_workers)
|
|
id = 0
|
|
paths = []
|
|
latents = []
|
|
points = []
|
|
for batch in tqdm(dataloader):
|
|
hq = batch['hq'].to('cuda')
|
|
# Pull several points from every image.
|
|
for k in range(10):
|
|
_, _, h, _ = hq.shape
|
|
point = torch.randint(h//4, 3*h//4, (2,)).long().to(hq.device)
|
|
model(img=hq, pos=point)
|
|
l = layer_hooked_value.cpu().split(1, dim=0)
|
|
latents.extend(l)
|
|
points.extend([point for p in range(batch_size)])
|
|
paths.extend(batch['HQ_path'])
|
|
id += batch_size
|
|
if id > 10000:
|
|
print("Saving checkpoint..")
|
|
torch.save((latents, points, paths),
|
|
'../results_segformer.pth')
|
|
id = 0
|
|
|
|
|
|
def find_similar_latents(model, compare_fn=structural_euc_dist):
|
|
global layer_hooked_value
|
|
|
|
img = 'F:\\dlas\\results\\bobz.png'
|
|
# img = 'F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\nicky_xx.jpg'
|
|
point = torch.tensor([154, 330], dtype=torch.long, device='cuda')
|
|
|
|
output_path = '../../../results/byol_resnet_similars'
|
|
os.makedirs(output_path, exist_ok=True)
|
|
imglatent = get_latent_for_img(model, img, point).squeeze().unsqueeze(0)
|
|
_, c = imglatent.shape
|
|
|
|
batch_size = 512
|
|
num_workers = 1
|
|
dataloader = get_image_folder_dataloader(batch_size, num_workers)
|
|
id = 0
|
|
output_batch = 1
|
|
results = []
|
|
result_paths = []
|
|
results_points = []
|
|
for batch in tqdm(dataloader):
|
|
hq = batch['hq'].to('cuda')
|
|
_, _, h, w = hq.shape
|
|
point = torch.randint(h//4, 3*h//4, (2,)).long().to(hq.device)
|
|
latent = model(img=hq, pos=point)
|
|
compared = compare_fn(imglatent.repeat(latent.shape[0], 1), latent)
|
|
results.append(compared.cpu())
|
|
result_paths.extend(batch['HQ_path'])
|
|
results_points.append(point.unsqueeze(0).repeat(batch_size, 1))
|
|
id += batch_size
|
|
if id > 10000:
|
|
k = 10
|
|
results = torch.cat(results, dim=0)
|
|
results_points = torch.cat(results_points, dim=0)
|
|
vals, inds = torch.topk(results, k, largest=False)
|
|
for i in inds:
|
|
point = results_points[i]
|
|
mag = int(results[i].item() * 100000000)
|
|
hqr = ToTensor()(Image.open(result_paths[i])).to('cuda')
|
|
hqr *= .5
|
|
hqr[:, point[0]-3:point[0]+3, point[1]-3:point[1]+3] *= 2
|
|
torchvision.utils.save_image(hqr, os.path.join(
|
|
output_path, f'{mag:08}_{output_batch}_{i}.jpg'))
|
|
results = []
|
|
result_paths = []
|
|
results_points = []
|
|
id = 0
|
|
|
|
|
|
def build_kmeans():
|
|
latents, _, _ = torch.load('../results_segformer.pth')
|
|
latents = torch.cat(latents, dim=0).squeeze().to('cuda')[50000:] * 10000
|
|
cluster_ids_x, cluster_centers = kmeans(
|
|
latents, num_clusters=16, distance="euclidean", device=torch.device('cuda:0'))
|
|
torch.save((cluster_ids_x, cluster_centers), '../k_means_segformer.pth')
|
|
|
|
|
|
class UnNormalize(object):
|
|
def __init__(self, mean, std):
|
|
self.mean = mean
|
|
self.std = std
|
|
|
|
def __call__(self, tensor):
|
|
"""
|
|
Args:
|
|
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
|
|
Returns:
|
|
Tensor: Normalized image.
|
|
"""
|
|
for t, m, s in zip(tensor, self.mean, self.std):
|
|
t.mul_(s).add_(m)
|
|
# The normalize code -> t.sub_(m).div_(s)
|
|
return tensor
|
|
|
|
|
|
def use_kmeans():
|
|
output = "../results/k_means_segformer/"
|
|
_, centers = torch.load('../k_means_segformer.pth')
|
|
centers = centers.to('cuda')
|
|
batch_size = 32
|
|
num_workers = 1
|
|
dataloader = get_image_folder_dataloader(
|
|
batch_size, num_workers, target_size=224, shuffle=True)
|
|
denorm = UnNormalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
|
|
for i, batch in enumerate(tqdm(dataloader)):
|
|
hq = batch['hq'].to('cuda')
|
|
_, _, h, w = hq.shape
|
|
point = torch.randint(h//4, 3*h//4, (2,)).long().to(hq.device)
|
|
model(hq, point)
|
|
l = layer_hooked_value.clone().squeeze()
|
|
pred = kmeans_predict(l, centers)
|
|
hq = denorm(hq * .5)
|
|
hq[:, :, point[0]-5:point[0]+5, point[1]-5:point[1]+5] *= 2
|
|
for b in range(pred.shape[0]):
|
|
outpath = os.path.join(output, str(pred[b].item()))
|
|
os.makedirs(outpath, exist_ok=True)
|
|
torchvision.utils.save_image(
|
|
hq[b], os.path.join(outpath, f'{i*batch_size+b}.png'))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
pretrained_path = '../../../experiments/segformer_contrastive.pth'
|
|
model = Segformer().to('cuda')
|
|
sd = torch.load(pretrained_path)
|
|
resnet_sd = {}
|
|
for k, v in sd.items():
|
|
if 'target_encoder.net.' in k:
|
|
resnet_sd[k.replace('target_encoder.net.', '')] = v
|
|
model.load_state_dict(resnet_sd, strict=True)
|
|
model.eval()
|
|
register_hook(model, 'tail')
|
|
|
|
with torch.no_grad():
|
|
find_similar_latents(model, structural_euc_dist)
|
|
# produce_latent_dict(model)
|
|
# build_kmeans()
|
|
# use_kmeans()
|