DL-Art-School/dlas/trainer/eval/music_diffusion_fid.py

360 lines
21 KiB
Python

import os
import os.path as osp
from glob import glob
import numpy as np
import torch
import torch.nn.functional as F
import torchaudio
import torchvision
from pytorch_fid.fid_score import calculate_frechet_distance
from torch import distributed
from tqdm import tqdm
import dlas.trainer.eval.evaluator as evaluator
from dlas.data.audio.unsupervised_audio_dataset import load_audio
from dlas.models.clip.contrastive_audio import ContrastiveAudio
from dlas.models.diffusion.gaussian_diffusion import get_named_beta_schedule
from dlas.models.diffusion.respace import SpacedDiffusion, space_timesteps
from dlas.trainer.injectors.audio_injectors import (
KmeansQuantizerInjector, TorchMelSpectrogramInjector,
denormalize_torch_mel, normalize_torch_mel, pixel_shuffle_1d)
from dlas.utils.music_utils import (get_ar_prior, get_cheater_decoder,
get_cheater_encoder, get_mel2wav_v3_model,
get_music_codegen)
from dlas.utils.util import load_model_from_config, opt_get
class MusicDiffusionFid(evaluator.Evaluator):
"""
Evaluator produces generate from a music diffusion model.
"""
def __init__(self, model, opt_eval, env):
super().__init__(model, opt_eval, env, uses_all_ddp=True)
self.real_path = opt_eval['path']
self.data = self.load_data(self.real_path)
self.clip = opt_get(opt_eval, ['clip_audio'], True) # Recommend setting true for more efficient eval passes.
self.ddim = opt_get(opt_eval, ['use_ddim'], False)
self.causal = opt_get(opt_eval, ['causal'], False)
self.causal_slope = opt_get(opt_eval, ['causal_slope'], 1)
if distributed.is_initialized() and distributed.get_world_size() > 1:
self.skip = distributed.get_world_size() # One batch element per GPU.
else:
self.skip = 1
diffusion_steps = opt_get(opt_eval, ['diffusion_steps'], 50)
diffusion_schedule = opt_get(env['opt'], ['steps', 'generator', 'injectors', 'diffusion', 'beta_schedule', 'schedule_name'], None)
if diffusion_schedule is None:
print("Unable to infer diffusion schedule from master options. Getting it from eval (or guessing).")
diffusion_schedule = opt_get(opt_eval, ['diffusion_schedule'], 'linear')
conditioning_free_diffusion_enabled = opt_get(opt_eval, ['conditioning_free'], False)
conditioning_free_k = opt_get(opt_eval, ['conditioning_free_k'], 1)
self.diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [diffusion_steps]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule(diffusion_schedule, 4000),
conditioning_free=conditioning_free_diffusion_enabled, conditioning_free_k=conditioning_free_k)
self.spectral_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [16 if self.ddim else 100]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
conditioning_free=False, conditioning_free_k=1)
self.dev = self.env['device']
mode = opt_get(opt_eval, ['diffusion_type'], 'spec_decode')
self.projector = ContrastiveAudio(model_dim=512, transformer_heads=8, dropout=0, encoder_depth=8, mel_channels=256)
self.projector.load_state_dict(torch.load('../experiments/music_eval_projector.pth', map_location=torch.device('cpu')))
self.spec_decoder = get_mel2wav_v3_model()
self.local_modules = {'projector': self.projector, 'spec_decoder': self.spec_decoder}
if mode == 'spec_decode':
self.diffusion_fn = self.perform_diffusion_spec_decode
self.squeeze_ratio = opt_eval['squeeze_ratio']
elif 'from_codes' == mode:
self.diffusion_fn = self.perform_diffusion_from_codes
self.local_modules['codegen'] = get_music_codegen()
elif 'from_codes_quant' == mode:
self.diffusion_fn = self.perform_diffusion_from_codes_quant
elif 'cheater_gen' == mode:
self.diffusion_fn = self.perform_reconstruction_from_cheater_gen
self.local_modules['cheater_encoder'] = get_cheater_encoder()
self.local_modules['cheater_decoder'] = get_cheater_decoder()
self.cheater_decoder_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
conditioning_free=True, conditioning_free_k=1)
self.spectral_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [16]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
conditioning_free=False, conditioning_free_k=1)
elif 'from_ar_prior' == mode:
self.diffusion_fn = self.perform_diffusion_from_codes_ar_prior
self.local_modules['cheater_encoder'] = get_cheater_encoder()
self.local_modules['cheater_decoder'] = get_cheater_decoder()
self.cheater_decoder_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon',
model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000),
conditioning_free=True, conditioning_free_k=1)
self.kmeans_inj = KmeansQuantizerInjector({'centroids': '../experiments/music_k_means_centroids.pth', 'in': 'in', 'out': 'out'}, {})
self.local_modules['ar_prior'] = get_ar_prior()
elif 'chained_sr' == mode:
self.diffusion_fn = self.perform_chained_sr
self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 11000, 'filter_length': 16000,
'normalize': True, 'in': 'in', 'out': 'out'}, {})
def load_data(self, path):
return list(glob(f'{path}/*.wav'))
def perform_diffusion_spec_decode(self, audio, sample_rate=22050):
real_resampled = audio
audio = audio.unsqueeze(0)
output_shape = (1, self.squeeze_ratio, audio.shape[-1] // self.squeeze_ratio)
mel = self.spec_fn({'in': audio})['out']
gen = self.diffuser.p_sample_loop(self.model, output_shape,
model_kwargs={'codes': mel})
gen = pixel_shuffle_1d(gen, self.squeeze_ratio)
return gen, real_resampled, normalize_torch_mel(self.spec_fn({'in': gen})['out']), normalize_torch_mel(mel), sample_rate, 0
def perform_diffusion_from_codes(self, audio, sample_rate=22050):
real_resampled = audio
audio = audio.unsqueeze(0)
mel = self.spec_fn({'in': audio})['out']
codegen = self.local_modules['codegen'].to(mel.device)
codes = codegen.get_codes(mel, project=True)
mel_norm = normalize_torch_mel(mel)
gen_mel = self.diffuser.p_sample_loop(self.model, mel_norm.shape,
model_kwargs={'codes': codes, 'conditioning_input': torch.zeros_like(mel_norm[:,:,:390])})
gen_mel_denorm = denormalize_torch_mel(gen_mel)
output_shape = (1,16,audio.shape[-1]//16)
self.spec_decoder = self.spec_decoder.to(audio.device)
gen_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape,
model_kwargs={'aligned_conditioning': gen_mel_denorm})
gen_wav = pixel_shuffle_1d(gen_wav, 16)
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate, torch.tensor([0])
def perform_diffusion_from_codes_quant(self, audio, sample_rate=22050):
audio = audio.unsqueeze(0)
mel = self.spec_fn({'in': audio})['out']
mel_norm = normalize_torch_mel(mel)
#def denoising_fn(x):
# q9 = torch.quantile(x, q=.95, dim=-1).unsqueeze(-1)
# s = q9.clamp(1, 9999999999)
# x = x.clamp(-s, s) / s
# return x
#perp = self.diffuser.p_sample_loop_for_log_perplexity(self.model, mel_norm,
# model_kwargs = {'truth_mel': mel_norm})
sampler = self.diffuser.ddim_sample_loop if self.ddim else self.diffuser.p_sample_loop
gen_mel = sampler(self.model, mel_norm.shape, model_kwargs={'truth_mel': mel_norm})
gen_mel_denorm = denormalize_torch_mel(gen_mel)
output_shape = (1,16,audio.shape[-1]//16)
self.spec_decoder = self.spec_decoder.to(audio.device)
sampler = self.spectral_diffuser.ddim_sample_loop if self.ddim else self.spectral_diffuser.p_sample_loop
gen_wav = sampler(self.spec_decoder, output_shape,
model_kwargs={'codes': gen_mel_denorm})
gen_wav = pixel_shuffle_1d(gen_wav, 16)
real_wav = sampler(self.spec_decoder, output_shape,
model_kwargs={'codes': mel})
real_wav = pixel_shuffle_1d(real_wav, 16)
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate, torch.tensor([0])
def perform_reconstruction_from_cheater_gen(self, audio, sample_rate=22050):
audio = audio.unsqueeze(0)
mel = self.spec_fn({'in': audio})['out']
mel_norm = normalize_torch_mel(mel)
cheater = self.local_modules['cheater_encoder'].to(audio.device)(mel_norm)
# 1. Generate the cheater latent using the input as a reference.
sampler = self.diffuser.ddim_sample_loop if self.ddim else self.diffuser.p_sample_loop
# center-pad the conditioning input (the center isn't actually used). this is hack for giving tfdpc5 a bigger working context.
cheater_padded = torch.cat([cheater[:,:,cheater.shape[-1]//2:], torch.zeros(1,256,160, device=cheater.device), cheater[:,:,:cheater.shape[-1]//2]], dim=-1)
gen_cheater = sampler(self.model, cheater.shape, progress=True,
causal=self.causal, causal_slope=self.causal_slope,
model_kwargs={'conditioning_input': cheater_padded, 'cond_start': 80})
# 2. Decode the cheater into a MEL
gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,gen_cheater.shape[-1]*16), progress=True,
model_kwargs={'codes': gen_cheater.permute(0,2,1)})
# 3. And then the MEL back into a spectrogram
output_shape = (1,16,audio.shape[-1]//16)
self.spec_decoder = self.spec_decoder.to(audio.device)
gen_mel_denorm = denormalize_torch_mel(gen_mel)
gen_wav = self.spectral_diffuser.ddim_sample_loop(self.spec_decoder, output_shape,
model_kwargs={'codes': gen_mel_denorm})
gen_wav = pixel_shuffle_1d(gen_wav, 16)
real_wav = self.spectral_diffuser.ddim_sample_loop(self.spec_decoder, output_shape,
model_kwargs={'codes': mel})
real_wav = pixel_shuffle_1d(real_wav, 16)
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate, torch.tensor([0])
def perform_diffusion_from_codes_ar_prior(self, audio, sample_rate=22050):
audio = audio.unsqueeze(0)
mel = self.spec_fn({'in': audio})['out']
mel_norm = normalize_torch_mel(mel)
cheater = self.local_modules['cheater_encoder'].to(audio.device)(mel_norm)
cheater_codes = self.kmeans_inj({'in': cheater})['out']
ar_latent = self.local_modules['ar_prior'].to(audio.device)(cheater_codes, cheater, return_latent=True)
# 1. Generate the cheater latent using the input as a reference.
sampler = self.diffuser.ddim_sample_loop if self.ddim else self.diffuser.p_sample_loop
gen_cheater = sampler(self.model, cheater.shape, progress=True,
causal=self.causal, causal_slope=self.causal_slope,
model_kwargs={'codes': ar_latent})
# 2. Decode the cheater into a MEL
gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,gen_cheater.shape[-1]*16), progress=True,
model_kwargs={'codes': gen_cheater.permute(0,2,1)})
gen_mel_denorm = denormalize_torch_mel(gen_mel)
# 3. Decode into waveform.
output_shape = (1,16,audio.shape[-1]//16)
self.spec_decoder = self.spec_decoder.to(audio.device)
gen_wav = self.spectral_diffuser.ddim_sample_loop(self.spec_decoder, output_shape, model_kwargs={'codes': gen_mel_denorm})
gen_wav = pixel_shuffle_1d(gen_wav, 16)
real_wav = self.spectral_diffuser.ddim_sample_loop(self.spec_decoder, output_shape, model_kwargs={'codes': mel})
real_wav = pixel_shuffle_1d(real_wav, 16)
return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate, torch.tensor([0])
def perform_chained_sr(self, audio, sample_rate=22050):
audio = audio.unsqueeze(0)
mel = self.spec_fn({'in': audio})['out']
mel_norm = normalize_torch_mel(mel)
conditioning = mel_norm[:,:,:1200]
downsampled = F.interpolate(mel_norm, scale_factor=1/4, mode='nearest')
stage1_shape = (1, 256, downsampled.shape[-1]*4)
sampler = self.diffuser.ddim_sample_loop if self.ddim else self.diffuser.p_sample_loop
# (Eventually) Chain super-sampling using 2 stages.
#stage1 = sampler(self.model, stage1_shape, model_kwargs={'resolution': torch.tensor([1], device=audio.device),
# 'x_prior': downsampled,
# 'conditioning_input': conditioning})
stage2 = sampler(self.model, mel.shape, model_kwargs={'resolution': torch.tensor([0], device=audio.device),
'x_prior': downsampled,
'conditioning_input': conditioning})
# Decode into waveform.
output_shape = (1,16,audio.shape[-1]//16)
self.spec_decoder = self.spec_decoder.to(audio.device)
gen_wav = self.spectral_diffuser.ddim_sample_loop(self.spec_decoder, output_shape, model_kwargs={'codes': stage2})
gen_wav = pixel_shuffle_1d(gen_wav, 16)
real_wav = self.spectral_diffuser.ddim_sample_loop(self.spec_decoder, output_shape, model_kwargs={'codes': mel})
real_wav = pixel_shuffle_1d(real_wav, 16)
return gen_wav, real_wav.squeeze(0), stage2, mel_norm, sample_rate, torch.tensor([0])
def project(self, sample, sample_rate):
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
mel = self.spec_fn({'in': sample})['out']
projection = self.projector.project(mel)
return projection.squeeze(0) # Getting rid of the batch dimension means it's just [hidden_dim]
def compute_frechet_distance(self, proj1, proj2):
# I really REALLY FUCKING HATE that this is going to numpy. Why does "pytorch_fid" operate in numpy land. WHY?
proj1 = proj1.cpu().numpy()
proj2 = proj2.cpu().numpy()
mu1 = np.mean(proj1, axis=0)
mu2 = np.mean(proj2, axis=0)
sigma1 = np.cov(proj1, rowvar=False)
sigma2 = np.cov(proj2, rowvar=False)
try:
return torch.tensor(calculate_frechet_distance(mu1, sigma1, mu2, sigma2))
except:
return 0
def perform_eval(self):
save_path = osp.join(self.env['base_path'], "../", "audio_eval", str(self.env["step"]))
os.makedirs(save_path, exist_ok=True)
self.projector = self.projector.to(self.dev)
self.projector.eval()
# Attempt to fix the random state as much as possible. RNG state will be restored before returning.
rng_state = torch.get_rng_state()
torch.manual_seed(5)
self.model.eval()
with torch.no_grad():
gen_projections = []
real_projections = []
perplexities = []
for i in tqdm(list(range(0, len(self.data), self.skip))):
path = self.data[(i + self.env['rank']) % len(self.data)]
audio = load_audio(path, 22050).to(self.dev)
#audio = load_audio('C:\\Users\\James\\Music\\another_longer_sample.wav', 22050).to(self.dev) # <- hack, remove it!
#audio = audio[:, :1764000]
if self.clip:
audio = audio[:, :100000]
sample, ref, sample_mel, ref_mel, sample_rate, perplexity = self.diffusion_fn(audio)
# Future note: need to normalize perplexity by the size of the input sample, which are always equal for now but not gauranteed for the future.
perplexities.append(perplexity)
gen_projections.append(self.project(sample, sample_rate).cpu()) # Store on CPU to avoid wasting GPU memory.
real_projections.append(self.project(ref, sample_rate).cpu())
torchaudio.save(os.path.join(save_path, f"{self.env['rank']}_{i}_gen.wav"), sample.squeeze(0).cpu(), sample_rate)
torchaudio.save(os.path.join(save_path, f"{self.env['rank']}_{i}_real.wav"), ref.cpu(), sample_rate)
torchvision.utils.save_image((sample_mel.unsqueeze(1) + 1) / 2, os.path.join(save_path, f"{self.env['rank']}_{i}_gen_mel.png"))
torchvision.utils.save_image((ref_mel.unsqueeze(1) + 1) / 2, os.path.join(save_path, f"{self.env['rank']}_{i}_real_mel.png"))
gen_projections = torch.stack(gen_projections, dim=0)
real_projections = torch.stack(real_projections, dim=0)
frechet_distance = torch.tensor(self.compute_frechet_distance(gen_projections, real_projections), device=self.env['device'])
perplexity = torch.stack(perplexities, dim=0).float().mean()
if distributed.is_initialized() and distributed.get_world_size() > 1:
distributed.all_reduce(frechet_distance)
frechet_distance = frechet_distance / distributed.get_world_size()
self.model.train()
torch.set_rng_state(rng_state)
# Put modules used for evaluation back into CPU memory.
for k, mod in self.local_modules.items():
self.local_modules[k] = mod.cpu()
self.spec_decoder = self.spec_decoder.cpu()
return {"frechet_distance": frechet_distance, "log_perplexity": perplexity}
if __name__ == '__main__':
# For multilevel SR:
"""
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_diffusion_multilevel_sr.yml', 'generator',
also_load_savepoint=False, strict_load=False,
load_path='X:\\dlas\\experiments\\train_music_diffusion_multilevel_sr_archived_prev2\\models\\18000_generator.pth'
).cuda()
opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
'diffusion_steps': 64, # basis: 192
'conditioning_free': False, 'conditioning_free_k': 1, 'use_ddim': True, 'clip_audio': True,
'diffusion_schedule': 'cosine', 'diffusion_type': 'chained_sr',
}
"""
# For TFD+cheater trainer
diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_diffusion_tfd_and_cheater.yml', 'generator',
also_load_savepoint=False, strict_load=False,
load_path='X:\\dlas\\experiments\\tfd14_and_cheater.pth'
).cuda()
opt_eval = {#'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :)
#'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.
'path': 'Y:\\separated\\tfd14_test',
'diffusion_steps': 256,
'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': False, 'clip_audio': True,
'diffusion_schedule': 'cosine', 'diffusion_type': 'from_codes_quant',
}
env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 18, 'device': 'cuda', 'opt': {}}
eval = MusicDiffusionFid(diffusion, opt_eval, env)
fds = []
for i in range(2):
res = eval.perform_eval()
print(res)
fds.append(res['frechet_distance'])
print(fds)