DL-Art-School/dlas/trainer/eval/sr_fid.py

95 lines
4.0 KiB
Python

import os
import os.path as osp
import torch
import torchvision
from pytorch_fid import fid_score
from torch.nn.functional import interpolate
from torch.utils.data import DataLoader
from tqdm import tqdm
import dlas.trainer.eval.evaluator as evaluator
from dlas.data import create_dataset
# Computes the SR FID score for a network, which is a FID score that attempts to account for structural changes the
# generator might make from the source image.
class SrFidEvaluator(evaluator.Evaluator):
def __init__(self, model, opt_eval, env):
super().__init__(model, opt_eval, env, uses_all_ddp=False)
self.batch_sz = opt_eval['batch_size']
assert self.batch_sz is not None
self.dataset = create_dataset(opt_eval['dataset'])
self.scale = opt_eval['scale']
# This is assumed to exist for the given dataset.
self.fid_real_samples = opt_eval['dataset']['paths']
assert isinstance(self.fid_real_samples, str)
self.dataloader = DataLoader(
self.dataset, self.batch_sz, shuffle=False, num_workers=1)
self.gen_output_index = opt_eval['gen_index'] if 'gen_index' in opt_eval.keys(
) else 0
def perform_eval(self):
fid_fake_path = osp.join(
self.env['base_path'], "..", "sr_fid", str(self.env["step"]))
os.makedirs(fid_fake_path, exist_ok=True)
counter = 0
for batch in tqdm(self.dataloader):
lq = batch['lq'].to(self.env['device'])
gen = self.model(lq)
if not isinstance(gen, list) and not isinstance(gen, tuple):
gen = [gen]
gen = gen[self.gen_output_index]
# Remove low-frequency differences
gen_lf = interpolate(interpolate(gen, scale_factor=1/self.scale, mode="area"), scale_factor=self.scale,
mode="nearest")
gen_hf = gen - gen_lf
hq_lf = interpolate(lq, scale_factor=self.scale, mode="nearest")
hq_gen_hf_applied = hq_lf + gen_hf
for b in range(self.batch_sz):
torchvision.utils.save_image(hq_gen_hf_applied[b], osp.join(
fid_fake_path, "%i_.png" % (counter)))
counter += 1
return {"sr_fid": fid_score.calculate_fid_given_paths([self.fid_real_samples, fid_fake_path], self.batch_sz, True,
2048)}
# A "normal" FID computation from a generator that takes LR inputs. Does not account for structural differences at all.
class FidForStructuralNetsEvaluator(evaluator.Evaluator):
def __init__(self, model, opt_eval, env):
super().__init__(model, opt_eval, env)
self.batch_sz = opt_eval['batch_size']
assert self.batch_sz is not None
self.dataset = create_dataset(opt_eval['dataset'])
self.scale = opt_eval['scale']
# This is assumed to exist for the given dataset.
self.fid_real_samples = opt_eval['dataset']['paths']
assert isinstance(self.fid_real_samples, str)
self.dataloader = DataLoader(
self.dataset, self.batch_sz, shuffle=False, num_workers=1)
self.gen_output_index = opt_eval['gen_index'] if 'gen_index' in opt_eval.keys(
) else 0
def perform_eval(self):
fid_fake_path = osp.join(
self.env['base_path'], "..", "fid", str(self.env["step"]))
os.makedirs(fid_fake_path, exist_ok=True)
counter = 0
for batch in tqdm(self.dataloader):
lq = batch['lq'].to(self.env['device'])
gen = self.model(lq)
if not isinstance(gen, list) and not isinstance(gen, tuple):
gen = [gen]
gen = gen[self.gen_output_index]
for b in range(self.batch_sz):
torchvision.utils.save_image(gen[b], osp.join(
fid_fake_path, "%i_.png" % (counter)))
counter += 1
return {"fid": fid_score.calculate_fid_given_paths([self.fid_real_samples, fid_fake_path], self.batch_sz, True,
2048)}