forked from mrq/DL-Art-School
a-One-Fan
ef5bd18f58
Are they really hacks though if the existing thing being "hacked" had so many magic cuda?
690 lines
23 KiB
Python
690 lines
23 KiB
Python
import logging
|
|
import math
|
|
import os
|
|
import pathlib
|
|
import random
|
|
import sys
|
|
import time
|
|
from collections import OrderedDict
|
|
from datetime import datetime
|
|
from shutil import get_terminal_size
|
|
|
|
import cv2
|
|
import numpy as np
|
|
import paramiko
|
|
import scp
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torchaudio
|
|
from audio2numpy import open_audio
|
|
from torch import nn
|
|
from torch.nn.parallel import DistributedDataParallel
|
|
from torch.utils.checkpoint import checkpoint
|
|
from torchvision.utils import make_grid
|
|
|
|
try:
|
|
# 1.13.1
|
|
from torch._six import inf
|
|
except Exception as e:
|
|
# 2.0
|
|
from torch import inf
|
|
|
|
import yaml
|
|
|
|
from dlas.trainer import networks
|
|
|
|
try:
|
|
from yaml import CDumper as Dumper
|
|
from yaml import CLoader as Loader
|
|
except ImportError:
|
|
from yaml import Dumper, Loader
|
|
|
|
loaded_options = None
|
|
|
|
|
|
def OrderedYaml():
|
|
'''yaml orderedDict support'''
|
|
_mapping_tag = yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG
|
|
|
|
def dict_representer(dumper, data):
|
|
return dumper.represent_dict(data.items())
|
|
|
|
def dict_constructor(loader, node):
|
|
return OrderedDict(loader.construct_pairs(node))
|
|
|
|
Dumper.add_representer(OrderedDict, dict_representer)
|
|
Loader.add_constructor(_mapping_tag, dict_constructor)
|
|
return Loader, Dumper
|
|
|
|
|
|
####################
|
|
# miscellaneous
|
|
####################
|
|
|
|
# Conditionally uses torch's checkpoint functionality if it is enabled in the opt file.
|
|
def checkpoint(fn, *args):
|
|
if loaded_options is None:
|
|
enabled = False
|
|
else:
|
|
enabled = loaded_options['checkpointing_enabled'] if 'checkpointing_enabled' in loaded_options.keys(
|
|
) else True
|
|
if enabled:
|
|
return torch.utils.checkpoint.checkpoint(fn, *args)
|
|
else:
|
|
return fn(*args)
|
|
|
|
|
|
def sequential_checkpoint(fn, partitions, *args):
|
|
if loaded_options is None:
|
|
enabled = False
|
|
else:
|
|
enabled = loaded_options['checkpointing_enabled'] if 'checkpointing_enabled' in loaded_options.keys(
|
|
) else True
|
|
if enabled:
|
|
return torch.utils.checkpoint.checkpoint_sequential(fn, partitions, *args)
|
|
else:
|
|
return fn(*args)
|
|
|
|
# A fancy alternative to if <flag> checkpoint() else <call>
|
|
|
|
|
|
def possible_checkpoint(opt_en, fn, *args):
|
|
if loaded_options is None:
|
|
enabled = False
|
|
else:
|
|
enabled = loaded_options['checkpointing_enabled'] if 'checkpointing_enabled' in loaded_options.keys(
|
|
) else True
|
|
if enabled and opt_en:
|
|
return torch.utils.checkpoint.checkpoint(fn, *args)
|
|
else:
|
|
return fn(*args)
|
|
|
|
|
|
def get_timestamp():
|
|
return datetime.now().strftime('%y%m%d-%H%M%S')
|
|
|
|
|
|
def mkdir(path):
|
|
if not os.path.exists(path):
|
|
os.makedirs(path)
|
|
|
|
|
|
def mkdirs(paths):
|
|
if isinstance(paths, str):
|
|
mkdir(paths)
|
|
else:
|
|
for path in paths:
|
|
mkdir(path)
|
|
|
|
|
|
def mkdir_and_rename(path):
|
|
if os.path.exists(path):
|
|
new_name = path + '_archived_' + get_timestamp()
|
|
print('Path already exists. Rename it to [{:s}]'.format(new_name))
|
|
logger = logging.getLogger('base')
|
|
logger.info(
|
|
'Path already exists. Rename it to [{:s}]'.format(new_name))
|
|
os.rename(path, new_name)
|
|
os.makedirs(path)
|
|
|
|
|
|
def set_random_seed(seed):
|
|
random.seed(seed)
|
|
np.random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
|
|
|
|
def setup_logger(logger_name, root, phase, level=logging.INFO, screen=False, tofile=False):
|
|
'''set up logger'''
|
|
lg = logging.getLogger(logger_name)
|
|
formatter = logging.Formatter('%(asctime)s.%(msecs)03d - %(levelname)s: %(message)s',
|
|
datefmt='%y-%m-%d %H:%M:%S')
|
|
lg.setLevel(level)
|
|
if tofile:
|
|
log_file = os.path.join(
|
|
root, phase + '_{}.log'.format(get_timestamp()))
|
|
fh = logging.FileHandler(log_file, mode='w')
|
|
fh.setFormatter(formatter)
|
|
lg.addHandler(fh)
|
|
if screen:
|
|
sh = logging.StreamHandler()
|
|
sh.setFormatter(formatter)
|
|
lg.addHandler(sh)
|
|
|
|
|
|
def copy_files_to_server(host, user, password, files, remote_path):
|
|
client = paramiko.SSHClient()
|
|
client.load_system_host_keys()
|
|
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
|
|
client.connect(host, username=user, password=password)
|
|
scpclient = scp.SCPClient(client.get_transport())
|
|
scpclient.put(files, remote_path)
|
|
|
|
|
|
def get_files_from_server(host, user, password, remote_path, local_path):
|
|
client = paramiko.SSHClient()
|
|
client.load_system_host_keys()
|
|
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
|
|
client.connect(host, username=user, password=password)
|
|
scpclient = scp.SCPClient(client.get_transport())
|
|
scpclient.get(remote_path, local_path)
|
|
|
|
####################
|
|
# image convert
|
|
####################
|
|
|
|
|
|
def crop_border(img_list, crop_border):
|
|
"""Crop borders of images
|
|
Args:
|
|
img_list (list [Numpy]): HWC
|
|
crop_border (int): crop border for each end of height and weight
|
|
|
|
Returns:
|
|
(list [Numpy]): cropped image list
|
|
"""
|
|
if crop_border == 0:
|
|
return img_list
|
|
else:
|
|
return [v[crop_border:-crop_border, crop_border:-crop_border] for v in img_list]
|
|
|
|
|
|
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
|
|
'''
|
|
Converts a torch Tensor into an image Numpy array
|
|
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
|
|
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
|
|
'''
|
|
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # clamp
|
|
tensor = (tensor - min_max[0]) / \
|
|
(min_max[1] - min_max[0]) # to range [0,1]
|
|
n_dim = tensor.dim()
|
|
if n_dim == 4:
|
|
n_img = len(tensor)
|
|
img_np = make_grid(tensor, nrow=int(
|
|
math.sqrt(n_img)), normalize=False).numpy()
|
|
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
|
elif n_dim == 3:
|
|
img_np = tensor.numpy()
|
|
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
|
|
elif n_dim == 2:
|
|
img_np = tensor.numpy()
|
|
else:
|
|
raise TypeError(
|
|
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
|
|
if out_type == np.uint8:
|
|
img_np = (img_np * 255.0).round()
|
|
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
|
|
return img_np.astype(out_type)
|
|
|
|
|
|
def save_img(img, img_path, mode='RGB'):
|
|
cv2.imwrite(img_path, img)
|
|
|
|
|
|
def DUF_downsample(x, scale=4):
|
|
"""Downsamping with Gaussian kernel used in the DUF official code
|
|
|
|
Args:
|
|
x (Tensor, [B, T, C, H, W]): frames to be downsampled.
|
|
scale (int): downsampling factor: 2 | 3 | 4.
|
|
"""
|
|
|
|
assert scale in [2, 3, 4], 'Scale [{}] is not supported'.format(scale)
|
|
|
|
def gkern(kernlen=13, nsig=1.6):
|
|
import scipy.ndimage.filters as fi
|
|
inp = np.zeros((kernlen, kernlen))
|
|
# set element at the middle to one, a dirac delta
|
|
inp[kernlen // 2, kernlen // 2] = 1
|
|
# gaussian-smooth the dirac, resulting in a gaussian filter mask
|
|
return fi.gaussian_filter(inp, nsig)
|
|
|
|
B, T, C, H, W = x.size()
|
|
x = x.view(-1, 1, H, W)
|
|
pad_w, pad_h = 6 + scale * 2, 6 + scale * \
|
|
2 # 6 is the pad of the gaussian filter
|
|
r_h, r_w = 0, 0
|
|
if scale == 3:
|
|
r_h = 3 - (H % 3)
|
|
r_w = 3 - (W % 3)
|
|
x = F.pad(x, [pad_w, pad_w + r_w, pad_h, pad_h + r_h], 'reflect')
|
|
|
|
gaussian_filter = torch.from_numpy(
|
|
gkern(13, 0.4 * scale)).type_as(x).unsqueeze(0).unsqueeze(0)
|
|
x = F.conv2d(x, gaussian_filter, stride=scale)
|
|
x = x[:, :, 2:-2, 2:-2]
|
|
x = x.view(B, T, C, x.size(2), x.size(3))
|
|
return x
|
|
|
|
|
|
def single_forward(model, inp):
|
|
"""PyTorch model forward (single test), it is just a simple warpper
|
|
Args:
|
|
model (PyTorch model)
|
|
inp (Tensor): inputs defined by the model
|
|
|
|
Returns:
|
|
output (Tensor): outputs of the model. float, in CPU
|
|
"""
|
|
with torch.no_grad():
|
|
model_output = model(inp)
|
|
if isinstance(model_output, list) or isinstance(model_output, tuple):
|
|
output = model_output[0]
|
|
else:
|
|
output = model_output
|
|
output = output.data.float().cpu()
|
|
return output
|
|
|
|
|
|
def flipx4_forward(model, inp):
|
|
"""Flip testing with X4 self ensemble, i.e., normal, flip H, flip W, flip H and W
|
|
Args:
|
|
model (PyTorch model)
|
|
inp (Tensor): inputs defined by the model
|
|
|
|
Returns:
|
|
output (Tensor): outputs of the model. float, in CPU
|
|
"""
|
|
# normal
|
|
output_f = single_forward(model, inp)
|
|
|
|
# flip W
|
|
output = single_forward(model, torch.flip(inp, (-1, )))
|
|
output_f = output_f + torch.flip(output, (-1, ))
|
|
# flip H
|
|
output = single_forward(model, torch.flip(inp, (-2, )))
|
|
output_f = output_f + torch.flip(output, (-2, ))
|
|
# flip both H and W
|
|
output = single_forward(model, torch.flip(inp, (-2, -1)))
|
|
output_f = output_f + torch.flip(output, (-2, -1))
|
|
|
|
return output_f / 4
|
|
|
|
|
|
####################
|
|
# metric
|
|
####################
|
|
|
|
|
|
def calculate_psnr(img1, img2):
|
|
# img1 and img2 have range [0, 255]
|
|
img1 = img1.astype(np.float64)
|
|
img2 = img2.astype(np.float64)
|
|
mse = np.mean((img1 - img2)**2)
|
|
if mse == 0:
|
|
return float('inf')
|
|
return 20 * math.log10(255.0 / math.sqrt(mse))
|
|
|
|
|
|
def ssim(img1, img2):
|
|
C1 = (0.01 * 255)**2
|
|
C2 = (0.03 * 255)**2
|
|
|
|
img1 = img1.astype(np.float64)
|
|
img2 = img2.astype(np.float64)
|
|
kernel = cv2.getGaussianKernel(11, 1.5)
|
|
window = np.outer(kernel, kernel.transpose())
|
|
|
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
|
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
|
|
mu1_sq = mu1**2
|
|
mu2_sq = mu2**2
|
|
mu1_mu2 = mu1 * mu2
|
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
|
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
|
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
|
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
|
|
(sigma1_sq + sigma2_sq + C2))
|
|
return ssim_map.mean()
|
|
|
|
|
|
def calculate_ssim(img1, img2):
|
|
'''calculate SSIM
|
|
the same outputs as MATLAB's
|
|
img1, img2: [0, 255]
|
|
'''
|
|
if not img1.shape == img2.shape:
|
|
raise ValueError('Input images must have the same dimensions.')
|
|
if img1.ndim == 2:
|
|
return ssim(img1, img2)
|
|
elif img1.ndim == 3:
|
|
if img1.shape[2] == 3:
|
|
ssims = []
|
|
for i in range(3):
|
|
ssims.append(ssim(img1, img2))
|
|
return np.array(ssims).mean()
|
|
elif img1.shape[2] == 1:
|
|
return ssim(np.squeeze(img1), np.squeeze(img2))
|
|
else:
|
|
raise ValueError('Wrong input image dimensions.')
|
|
|
|
|
|
class ProgressBar(object):
|
|
'''A progress bar which can print the progress
|
|
modified from https://github.com/hellock/cvbase/blob/master/cvbase/progress.py
|
|
'''
|
|
|
|
def __init__(self, task_num=0, bar_width=50, start=True):
|
|
self.task_num = task_num
|
|
max_bar_width = self._get_max_bar_width()
|
|
self.bar_width = (bar_width if bar_width <=
|
|
max_bar_width else max_bar_width)
|
|
self.completed = 0
|
|
if start:
|
|
self.start()
|
|
|
|
def _get_max_bar_width(self):
|
|
terminal_width, _ = get_terminal_size()
|
|
max_bar_width = min(int(terminal_width * 0.6), terminal_width - 50)
|
|
if max_bar_width < 10:
|
|
print('terminal width is too small ({}), please consider widen the terminal for better '
|
|
'progressbar visualization'.format(terminal_width))
|
|
max_bar_width = 10
|
|
return max_bar_width
|
|
|
|
def start(self):
|
|
if self.task_num > 0:
|
|
sys.stdout.write('[{}] 0/{}, elapsed: 0s, ETA:\n{}\n'.format(
|
|
' ' * self.bar_width, self.task_num, 'Start...'))
|
|
else:
|
|
sys.stdout.write('completed: 0, elapsed: 0s')
|
|
sys.stdout.flush()
|
|
self.start_time = time.time()
|
|
|
|
def update(self, msg='In progress...'):
|
|
self.completed += 1
|
|
elapsed = time.time() - self.start_time
|
|
fps = self.completed / elapsed
|
|
if self.task_num > 0:
|
|
percentage = self.completed / float(self.task_num)
|
|
eta = int(elapsed * (1 - percentage) / percentage + 0.5)
|
|
mark_width = int(self.bar_width * percentage)
|
|
bar_chars = '>' * mark_width + '-' * (self.bar_width - mark_width)
|
|
sys.stdout.write('\033[2F') # cursor up 2 lines
|
|
# clean the output (remove extra chars since last display)
|
|
sys.stdout.write('\033[J')
|
|
sys.stdout.write('[{}] {}/{}, {:.1f} task/s, elapsed: {}s, ETA: {:5}s\n{}\n'.format(
|
|
bar_chars, self.completed, self.task_num, fps, int(elapsed + 0.5), eta, msg))
|
|
else:
|
|
sys.stdout.write('completed: {}, elapsed: {}s, {:.1f} tasks/s'.format(
|
|
self.completed, int(elapsed + 0.5), fps))
|
|
sys.stdout.flush()
|
|
|
|
|
|
# Recursively detaches all tensors in a tree of lists, dicts and tuples and returns the same structure.
|
|
def recursively_detach(v):
|
|
if isinstance(v, torch.Tensor):
|
|
return v.detach().clone()
|
|
elif isinstance(v, list) or isinstance(v, tuple):
|
|
out = [recursively_detach(i) for i in v]
|
|
if isinstance(v, tuple):
|
|
return tuple(out)
|
|
return out
|
|
elif isinstance(v, dict):
|
|
out = {}
|
|
for k, t in v.items():
|
|
out[k] = recursively_detach(t)
|
|
return out
|
|
|
|
|
|
def opt_get(opt, keys, default=None):
|
|
assert not isinstance(keys, str) # Common mistake, better to assert.
|
|
if opt is None:
|
|
return default
|
|
ret = opt
|
|
for k in keys:
|
|
ret = ret.get(k, None)
|
|
if ret is None:
|
|
return default
|
|
return ret
|
|
|
|
|
|
def denormalize(x, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]):
|
|
ten = x.clone().permute(1, 2, 3, 0)
|
|
for t, m, s in zip(ten, mean, std):
|
|
t.mul_(s).add_(m)
|
|
return torch.clamp(ten, 0, 1).permute(3, 0, 1, 2)
|
|
|
|
|
|
def get_mask_from_lengths(lengths, max_len=None):
|
|
if max_len is None:
|
|
max_len = torch.max(lengths).item()
|
|
ids = torch.arange(0, max_len, out=torch.LongTensor(
|
|
max_len)).to(lengths.device)
|
|
mask = (ids < lengths.unsqueeze(1)).bool()
|
|
return mask
|
|
|
|
|
|
def clip_grad_norm(parameters: list, parameter_names: list, max_norm: float, norm_type: float = 2.0) -> torch.Tensor:
|
|
r"""
|
|
Equivalent to torch.nn.utils.clip_grad_norm_() but with the following changes:
|
|
- Takes in a dictionary of parameters (from get_named_parameters()) instead of a list of parameters.
|
|
- When NaN or inf norms are encountered, the parameter name is printed.
|
|
- error_if_nonfinite removed.
|
|
|
|
Clips gradient norm of an iterable of parameters.
|
|
|
|
The norm is computed over all gradients together, as if they were
|
|
concatenated into a single vector. Gradients are modified in-place.
|
|
|
|
Args:
|
|
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
|
|
single Tensor that will have gradients normalized
|
|
max_norm (float or int): max norm of the gradients
|
|
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
|
|
infinity norm.
|
|
error_if_nonfinite (bool): if True, an error is thrown if the total
|
|
norm of the gradients from :attr:``parameters`` is ``nan``,
|
|
``inf``, or ``-inf``. Default: False (will switch to True in the future)
|
|
|
|
Returns:
|
|
Total norm of the parameters (viewed as a single vector).
|
|
"""
|
|
parameters = [p for p in parameters if p.grad is not None]
|
|
max_norm = float(max_norm)
|
|
norm_type = float(norm_type)
|
|
if len(parameters) == 0:
|
|
return torch.tensor(0.)
|
|
device = parameters[0].grad.device
|
|
if norm_type == inf:
|
|
norms = [p.grad.detach().abs().max().to(device) for p in parameters]
|
|
total_norm = norms[0] if len(
|
|
norms) == 1 else torch.max(torch.stack(norms))
|
|
else:
|
|
total_norm = torch.norm(torch.stack([torch.norm(
|
|
p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
|
|
clip_coef = max_norm / (total_norm + 1e-6)
|
|
if clip_coef < 1:
|
|
for p in parameters:
|
|
p.grad.detach().mul_(clip_coef.to(p.grad.device))
|
|
return total_norm
|
|
|
|
|
|
Loader, Dumper = OrderedYaml()
|
|
|
|
|
|
def load_model_from_config(cfg_file=None, model_name=None, also_load_savepoint=True, load_path=None,
|
|
preloaded_options=None, strict_load=True, device=None):
|
|
if preloaded_options is not None:
|
|
opt = preloaded_options
|
|
else:
|
|
with open(cfg_file, mode='r') as f:
|
|
opt = yaml.load(f, Loader=Loader)
|
|
if model_name is None:
|
|
model_cfg = opt['networks'].values()
|
|
model_name = next(opt['networks'].keys())
|
|
else:
|
|
model_cfg = opt['networks'][model_name]
|
|
if 'which_model_G' in model_cfg.keys() and 'which_model' not in model_cfg.keys():
|
|
model_cfg['which_model'] = model_cfg['which_model_G']
|
|
model = networks.create_model(opt, model_cfg).to(device)
|
|
if also_load_savepoint and f'pretrain_model_{model_name}' in opt['path'].keys():
|
|
assert load_path is None
|
|
load_path = opt['path'][f'pretrain_model_{model_name}']
|
|
if load_path is not None:
|
|
print(f"Loading from {load_path}")
|
|
sd = torch.load(load_path, map_location=device)
|
|
model.load_state_dict(sd, strict=strict_load)
|
|
return model
|
|
|
|
|
|
# Mapper for torch.load() that maps cuda devices to the correct CUDA device, but leaves CPU devices alone.
|
|
def map_cuda_to_correct_device(storage, loc):
|
|
if os.environ.get("AIVC_TRAIN_ONEAPI"):
|
|
if str(loc).startswith('xpu'):
|
|
return storage.xpu(torch.xpu.current_device())
|
|
else:
|
|
return storage.cpu()
|
|
else:
|
|
if str(loc).startswith('cuda'):
|
|
return storage.cuda(torch.cuda.current_device())
|
|
else:
|
|
return storage.cpu()
|
|
|
|
|
|
def list_to_device(l, dev):
|
|
return [anything_to_device(e, dev) for e in l]
|
|
|
|
|
|
def map_to_device(m, dev):
|
|
return {k: anything_to_device(v, dev) for k, v in m.items()}
|
|
|
|
|
|
def anything_to_device(obj, dev):
|
|
if isinstance(obj, list):
|
|
return list_to_device(obj, dev)
|
|
elif isinstance(obj, map):
|
|
return map_to_device(obj, dev)
|
|
elif isinstance(obj, torch.Tensor):
|
|
return obj.to(dev)
|
|
else:
|
|
return obj
|
|
|
|
|
|
def ceil_multiple(base, multiple):
|
|
"""
|
|
Returns the next closest multiple >= base.
|
|
"""
|
|
res = base % multiple
|
|
if res == 0:
|
|
return base
|
|
return base + (multiple - res)
|
|
|
|
|
|
def optimizer_to(opt, device):
|
|
"""
|
|
Pushes the optimizer params from opt onto the specified device.
|
|
"""
|
|
for param in opt.state.values():
|
|
if isinstance(param, torch.Tensor):
|
|
param.data = param.data.to(device)
|
|
if param._grad is not None:
|
|
param._grad.data = param._grad.data.to(device)
|
|
elif isinstance(param, dict):
|
|
for subparam in param.values():
|
|
if isinstance(subparam, torch.Tensor):
|
|
subparam.data = subparam.data.to(device)
|
|
if subparam._grad is not None:
|
|
subparam._grad.data = subparam._grad.data.to(device)
|
|
|
|
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
|
|
# ''' AUDIO UTILS '''
|
|
# ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
|
|
|
|
|
|
def find_audio_files(base_path, globs=['*.wav', '*.mp3', '*.ogg', '*.flac']):
|
|
path = pathlib.Path(base_path)
|
|
paths = []
|
|
for glob in globs:
|
|
paths.extend([str(f) for f in path.rglob(glob)])
|
|
return paths
|
|
|
|
|
|
def load_audio(audiopath, sampling_rate, raw_data=None):
|
|
audiopath = str(audiopath)
|
|
if raw_data is not None:
|
|
# Assume the data is wav format. SciPy's reader can read raw WAV data from a BytesIO wrapper.
|
|
audio, lsr = load_wav_to_torch(raw_data)
|
|
else:
|
|
if audiopath[-4:] == '.wav':
|
|
audio, lsr = load_wav_to_torch(audiopath)
|
|
elif audiopath[-5:] == '.flac':
|
|
import soundfile as sf
|
|
audio, lsr = sf.read(audiopath)
|
|
audio = torch.FloatTensor(audio)
|
|
elif audiopath[-4:] == '.aac':
|
|
# Process AAC files using pydub. I'd use this for everything except I'm cornered into backwards compatibility.
|
|
from pydub import AudioSegment
|
|
asg = AudioSegment.from_file(audiopath)
|
|
dtype = getattr(np, "int{:d}".format(asg.sample_width * 8))
|
|
arr = np.ndarray((int(asg.frame_count()), asg.channels),
|
|
buffer=asg.raw_data, dtype=dtype)
|
|
arr = arr.astype('float') / (2 ** (asg.sample_width * 8 - 1))
|
|
arr = arr[:, 0]
|
|
audio = torch.FloatTensor(arr)
|
|
lsr = asg.frame_rate
|
|
else:
|
|
audio, lsr = open_audio(audiopath)
|
|
audio = torch.FloatTensor(audio)
|
|
|
|
# Remove any channel data.
|
|
if len(audio.shape) > 1:
|
|
if audio.shape[0] < 5:
|
|
audio = audio[0]
|
|
else:
|
|
assert audio.shape[1] < 5
|
|
audio = audio[:, 0]
|
|
|
|
if lsr != sampling_rate:
|
|
audio = torchaudio.functional.resample(audio, lsr, sampling_rate)
|
|
|
|
# Check some assumptions about audio range. This should be automatically fixed in load_wav_to_torch, but might not be in some edge cases, where we should squawk.
|
|
# '2' is arbitrarily chosen since it seems like audio will often "overdrive" the [-1,1] bounds.
|
|
if torch.any(audio > 2) or not torch.any(audio < 0):
|
|
print(f"Error with {audiopath}. Max={audio.max()} min={audio.min()}")
|
|
audio.clip_(-1, 1)
|
|
|
|
return audio
|
|
|
|
|
|
def pad_or_truncate(t, length):
|
|
if t.shape[-1] == length:
|
|
return t
|
|
elif t.shape[-1] < length:
|
|
return F.pad(t, (0, length-t.shape[-1]))
|
|
else:
|
|
return t[..., :length]
|
|
|
|
|
|
def load_wav_to_torch(full_path):
|
|
import scipy.io.wavfile
|
|
sampling_rate, data = scipy.io.wavfile.read(full_path)
|
|
if data.dtype == np.int32:
|
|
norm_fix = 2 ** 31
|
|
elif data.dtype == np.int16:
|
|
norm_fix = 2 ** 15
|
|
elif data.dtype == np.float16 or data.dtype == np.float32:
|
|
norm_fix = 1.
|
|
else:
|
|
raise NotImplemented(
|
|
f"Provided data dtype not supported: {data.dtype}")
|
|
return (torch.FloatTensor(data.astype(np.float32)) / norm_fix, sampling_rate)
|
|
|
|
|
|
def get_network_description(network):
|
|
"""Get the string and total parameters of the network"""
|
|
if isinstance(network, nn.DataParallel) or isinstance(network, DistributedDataParallel):
|
|
network = network.module
|
|
return str(network), sum(map(lambda x: x.numel(), network.parameters()))
|
|
|
|
|
|
def print_network(net, name='some network'):
|
|
s, n = get_network_description(net)
|
|
net_struc_str = '{}'.format(net.__class__.__name__)
|
|
print('Network {} structure: {}, with parameters: {:,d}'.format(
|
|
name, net_struc_str, n))
|
|
print(s)
|