forked from mrq/DL-Art-School
65 lines
2.2 KiB
Python
65 lines
2.2 KiB
Python
# This script iterates through all the data with no worker threads and performs whatever transformations are prescribed.
|
|
# The idea is to find bad/corrupt images.
|
|
|
|
import math
|
|
import argparse
|
|
import random
|
|
import torch
|
|
from utils import util, options as option
|
|
from data import create_dataloader, create_dataset
|
|
from tqdm import tqdm
|
|
from skimage import io
|
|
|
|
def main():
|
|
#### options
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../../options/train_imgset_spsr_switched2_xlbatch.yml')
|
|
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none',
|
|
help='job launcher')
|
|
parser.add_argument('--local_rank', type=int, default=0)
|
|
args = parser.parse_args()
|
|
opt = option.parse(args.opt, is_train=True)
|
|
|
|
#### distributed training settings
|
|
opt['dist'] = False
|
|
rank = -1
|
|
|
|
# convert to NoneDict, which returns None for missing keys
|
|
opt = option.dict_to_nonedict(opt)
|
|
|
|
#### random seed
|
|
seed = opt['train']['manual_seed']
|
|
if seed is None:
|
|
seed = random.randint(1, 10000)
|
|
util.set_random_seed(seed)
|
|
|
|
torch.backends.cudnn.benchmark = True
|
|
# torch.backends.cudnn.deterministic = True
|
|
|
|
#### create train and val dataloader
|
|
for phase, dataset_opt in opt['datasets'].items():
|
|
if phase == 'train':
|
|
train_set = create_dataset(dataset_opt)
|
|
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
|
|
total_iters = int(opt['train']['niter'])
|
|
total_epochs = int(math.ceil(total_iters / train_size))
|
|
dataset_opt['n_workers'] = 0 # Force num_workers=0 to make dataloader work in process.
|
|
train_loader = create_dataloader(train_set, dataset_opt, opt, None)
|
|
if rank <= 0:
|
|
print('Number of train images: {:,d}, iters: {:,d}'.format(
|
|
len(train_set), train_size))
|
|
assert train_loader is not None
|
|
|
|
tq_ldr = tqdm(train_set.get_paths())
|
|
for path in tq_ldr:
|
|
try:
|
|
_ = io.imread(path)
|
|
# Do stuff with img
|
|
except Exception as e:
|
|
print("Error with %s" % (path,))
|
|
print(e)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|