forked from mrq/DL-Art-School
267 lines
11 KiB
Python
267 lines
11 KiB
Python
import argparse
|
|
import logging
|
|
import math
|
|
import os
|
|
from glob import glob
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torchvision
|
|
from PIL import Image
|
|
from tqdm import tqdm
|
|
|
|
import utils.options as option
|
|
|
|
import utils
|
|
from data.image_corruptor import ImageCorruptor
|
|
from trainer.ExtensibleTrainer import ExtensibleTrainer
|
|
from utils import util
|
|
|
|
|
|
def image_2_tensor(impath, max_size=None):
|
|
img = Image.open(impath)
|
|
|
|
if max_size is not None:
|
|
factor = min(max_size / img.width, max_size / img.height)
|
|
new_size = (int(math.ceil(img.width * factor)), int(math.ceil(img.height * factor)))
|
|
img = img.resize(new_size, Image.LANCZOS)
|
|
|
|
'''
|
|
# Useful for setting an image to an exact size.
|
|
h_gap = img.height - desired_size[1]
|
|
w_gap = img.width - desired_size[0]
|
|
assert h_gap >= 0 and w_gap >= 0
|
|
ht = h_gap // 2
|
|
hb = desired_size[1] + ht
|
|
wl = w_gap // 2
|
|
wr = desired_size[1] + wl
|
|
'''
|
|
|
|
timg = torchvision.transforms.ToTensor()(img).unsqueeze(0)
|
|
|
|
#if desired_size is not None:
|
|
# timg = timg[:, :3, ht:hb, wl:wr]
|
|
# assert timg.shape[2] == desired_size[1] and timg.shape[3] == desired_size[0]
|
|
#else:
|
|
# Enforce that the input must have a input dimension that is a factor of 16.
|
|
b, c, h, w = timg.shape
|
|
h = (h // 16) * 16
|
|
w = (w // 16) * 16
|
|
timg = timg[:, :3, :h, :w]
|
|
|
|
return timg
|
|
|
|
|
|
def interpolate_lr(hr, scale):
|
|
return F.interpolate(hr, scale_factor=1 / scale, mode="area")
|
|
|
|
|
|
def fetch_latents_for_image(gen, img, scale, lr_infer=interpolate_lr):
|
|
z, _, _ = gen(gt=img,
|
|
lr=lr_infer(img, scale),
|
|
epses=[],
|
|
reverse=False,
|
|
add_gt_noise=False)
|
|
return z
|
|
|
|
|
|
def fetch_latents_for_images(gen, imgs, scale, lr_infer=interpolate_lr):
|
|
latents = []
|
|
for img in imgs:
|
|
z, _, _ = gen(gt=img,
|
|
lr=lr_infer(img, scale),
|
|
epses=[],
|
|
reverse=False,
|
|
add_gt_noise=False)
|
|
latents.append(z)
|
|
return latents
|
|
|
|
|
|
def fetch_spatial_metrics_for_latents(latents):
|
|
dt_scales = []
|
|
dt_biases = []
|
|
for i in range(len(latents)):
|
|
latent = torch.stack(latents[i], dim=-1).squeeze(0)
|
|
s = latent.std(dim=[1, 2, 3]).view(1,-1,1,1)
|
|
b = latent.mean(dim=[1, 2, 3]).view(1,-1,1,1)
|
|
dt_scales.append(s)
|
|
dt_biases.append(b)
|
|
return dt_scales, dt_biases
|
|
|
|
|
|
def spatial_norm(latents, exclusion_list=[]):
|
|
nlatents = []
|
|
for i in range(len(latents)):
|
|
latent = latents[i]
|
|
if i in exclusion_list:
|
|
nlatents.append(latent)
|
|
else:
|
|
b, c, h, w = latent.shape
|
|
s = latent.std(dim=[2, 3]).view(1,c,1,1)
|
|
b = latent.mean(dim=[2, 3]).view(1,c,1,1)
|
|
nlatents.append((latents[i] - b) / s)
|
|
return nlatents
|
|
|
|
|
|
def local_norm(latents, exclusion_list=[]):
|
|
nlatents = []
|
|
for i in range(len(latents)):
|
|
latent = latents[i]
|
|
if i in exclusion_list:
|
|
nlatents.append(latent)
|
|
else:
|
|
b, c, h, w = latent.shape
|
|
s = latent.std(dim=[1]).view(1,1,h,w)
|
|
b = latent.mean(dim=[1]).view(1,1,h,w)
|
|
nlatents.append((latents[i] - b) / s)
|
|
return nlatents
|
|
|
|
|
|
# Extracts a rectangle of the same shape as <lat> from <ref> and returns it. This is taken from the center of <ref>
|
|
def extract_center_latent(ref, lat):
|
|
_, _, h, w = lat.shape
|
|
_, _, rh, rw = ref.shape
|
|
dw = (rw - w) / 2
|
|
dh = (rh - h) / 2
|
|
return ref[:, :, math.floor(dh):-math.ceil(dh), math.floor(dw):-math.ceil(dw)]
|
|
|
|
|
|
def linear_interpolation(latents1, latents2, proportion):
|
|
return [l1*proportion+l2*(1-proportion) for l1, l2 in zip(latents1, latents2)]
|
|
|
|
|
|
def slerp(latents1, latents2, proportion):
|
|
res = []
|
|
for low, high in zip(latents1, latents2):
|
|
low_norm = low / torch.norm(low, dim=[2,3], keepdim=True)
|
|
high_norm = high / torch.norm(high, dim=[2,3], keepdim=True)
|
|
omega = torch.acos((low_norm * high_norm).sum(1))
|
|
so = torch.sin(omega)
|
|
res.append((torch.sin((1.0 - proportion) * omega) / so).unsqueeze(1) * low + (torch.sin(proportion * omega) / so).unsqueeze(1) * high)
|
|
return res
|
|
|
|
|
|
def create_interpolation_video(gen, lq, output_file, latents1, latents2, steps=10, prefix=''):
|
|
# Outputs a series of images interpolated from [latents1] to [latents2]. image 0 biases towards latents2.
|
|
for i in range(steps):
|
|
proportion = i / (steps-1)
|
|
lats = linear_interpolation(latents1, latents2, proportion)
|
|
hr, _, _ = gen(lr=lq,
|
|
z=lats[0],
|
|
reverse=True,
|
|
epses=lats,
|
|
add_gt_noise=False)
|
|
torchvision.transforms.ToPILImage()(hr.squeeze(0).cpu())
|
|
torchvision.utils.save_image(hr.cpu(), os.path.join(output_file, "%s_%i.png" % (prefix, i)))
|
|
# Stopped using this because PILs animated gif output is total crap.
|
|
#images[0].save(output_file, save_all=True, append_images=images[1:], duration=80, loop=0)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
#### options
|
|
torch.backends.cudnn.benchmark = True
|
|
srg_analyze = False
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/train_exd_imgsetext_srflow_bigboi_frompsnr.yml')
|
|
opt = option.parse(parser.parse_args().opt, is_train=False)
|
|
opt = option.dict_to_nonedict(opt)
|
|
utils.util.loaded_options = opt
|
|
|
|
util.mkdirs(
|
|
(path for key, path in opt['path'].items()
|
|
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
|
|
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
|
|
screen=True, tofile=True)
|
|
logger = logging.getLogger('base')
|
|
logger.info(option.dict2str(opt))
|
|
|
|
model = ExtensibleTrainer(opt)
|
|
gen = model.networks['generator']
|
|
gen.eval()
|
|
|
|
mode = "feed_through" # temperature | restore | latent_transfer | feed_through
|
|
imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\adrianna\\val2\\lr\\*"
|
|
#imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\*"
|
|
#imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\imagesets\\images-half\\*lanette*"
|
|
scale = 2
|
|
resample_factor = 2 # When != 1, the HR image is upsampled by this factor using a bicubic to get the local latents. E.g. set this to '2' to get 2x upsampling.
|
|
temperature = 1
|
|
output_path = "..\\..\\results\\latent_playground"
|
|
|
|
# Data types <- used to perform latent transfer.
|
|
data_path = "F:\\4k6k\\datasets\\ns_images\\imagesets\\images-half"
|
|
#data_type_filters = ["*alexa*", "*lanette*", "*80755*", "*joli_high*"]
|
|
data_type_filters = ["*lanette*"]
|
|
max_size = 1600 # Should be set to 2x the largest single dimension of the input space, otherwise an error will occur.
|
|
max_ref_datatypes = 30 # Only picks this many images from the above data types to sample from.
|
|
interpolation_steps = 30
|
|
|
|
with torch.no_grad():
|
|
# Compute latent variables for the reference images.
|
|
if mode == "latent_transfer":
|
|
# Just get the **one** result for each pattern and use that latent.
|
|
dt_imgs = [glob(os.path.join(data_path, p))[-5] for p in data_type_filters]
|
|
dt_transfers = [image_2_tensor(i, max_size) for i in dt_imgs]
|
|
# Downsample the images because they are often just too big to feed through the network (probably needs to be parameterized)
|
|
#for j in range(len(dt_transfers)):
|
|
# if min(dt_transfers[j].shape[2], dt_transfers[j].shape[3]) > 1600:
|
|
# dt_transfers[j] = F.interpolate(dt_transfers[j], scale_factor=1 / 2, mode='area')
|
|
corruptor = ImageCorruptor({'fixed_corruptions': ['jpeg-medium', 'gaussian_blur_3']})
|
|
def corrupt_and_downsample(img, scale):
|
|
img = F.interpolate(img, scale_factor=1 / scale, mode="area")
|
|
from data.util import torch2cv, cv2torch
|
|
cvimg = torch2cv(img)
|
|
cvimg = corruptor.corrupt_images([cvimg])[0]
|
|
img = cv2torch(cvimg)
|
|
return img
|
|
dt_latents = [fetch_latents_for_image(gen, i, scale, corrupt_and_downsample) for i in dt_transfers]
|
|
|
|
# Fetch the images to resample.
|
|
img_files = glob(imgs_to_resample_pattern)
|
|
#random.shuffle(img_files)
|
|
for im_it, img_file in enumerate(tqdm(img_files)):
|
|
t = image_2_tensor(img_file).to(model.env['device'])
|
|
if resample_factor > 1:
|
|
t = F.interpolate(t, scale_factor=resample_factor, mode="bicubic")
|
|
elif resample_factor < 1:
|
|
t = F.interpolate(t, scale_factor=resample_factor, mode="area")
|
|
# Ensure the input image is a factor of 16.
|
|
_, _, h, w = t.shape
|
|
h = 16 * (h // 16)
|
|
w = 16 * (w // 16)
|
|
t = t[:, :, :h, :w]
|
|
resample_img = t
|
|
|
|
# Fetch the latent metrics & latents for each image we are resampling.
|
|
latents = fetch_latents_for_images(gen, [resample_img], scale)[0]
|
|
|
|
multiple_latents = False
|
|
if mode == "restore":
|
|
latents = local_norm(spatial_norm(latents))
|
|
#latents = spatial_norm(latents)
|
|
latents = [l * temperature for l in latents]
|
|
elif mode == "feed_through":
|
|
latents = [torch.randn_like(l) * temperature for l in latents]
|
|
elif mode == "latent_transfer":
|
|
dts = []
|
|
for slat in dt_latents:
|
|
assert slat[0].shape[2] >= latents[0].shape[2]
|
|
assert slat[0].shape[3] >= latents[0].shape[3]
|
|
dts.append([extract_center_latent(sl, l) * temperature for l, sl in zip(latents, slat)])
|
|
latents = dts
|
|
multiple_latents = True
|
|
elif mode == "temperature":
|
|
latents = [l * temperature for l in latents]
|
|
|
|
# Re-compute each image with the new metrics
|
|
if not multiple_latents:
|
|
lats = [latents]
|
|
else:
|
|
lats = latents
|
|
for j in range(len(lats)):
|
|
path = os.path.join(output_path, "%i_%i" % (im_it, j))
|
|
os.makedirs(path, exist_ok=True)
|
|
torchvision.utils.save_image(resample_img, os.path.join(path, "orig_%i.jpg" % (im_it)))
|
|
create_interpolation_video(gen, F.interpolate(resample_img, scale_factor=1/scale, mode="area"),
|
|
path, [torch.zeros_like(l) for l in lats[j]], lats[j], prefix=mode)
|