forked from mrq/DL-Art-School
234 lines
8.8 KiB
Python
234 lines
8.8 KiB
Python
import functools
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import models.archs.srflow_orig.module_util as mutil
|
|
from models.archs.arch_util import default_init_weights, ConvGnSilu
|
|
from utils.util import opt_get
|
|
|
|
|
|
class ResidualDenseBlock(nn.Module):
|
|
"""Residual Dense Block.
|
|
|
|
Used in RRDB block in ESRGAN.
|
|
|
|
Args:
|
|
mid_channels (int): Channel number of intermediate features.
|
|
growth_channels (int): Channels for each growth.
|
|
"""
|
|
|
|
def __init__(self, mid_channels=64, growth_channels=32):
|
|
super(ResidualDenseBlock, self).__init__()
|
|
for i in range(5):
|
|
out_channels = mid_channels if i == 4 else growth_channels
|
|
self.add_module(
|
|
f'conv{i+1}',
|
|
nn.Conv2d(mid_channels + i * growth_channels, out_channels, 3,
|
|
1, 1))
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
for i in range(5):
|
|
default_init_weights(getattr(self, f'conv{i+1}'), 0.1)
|
|
|
|
|
|
def forward(self, x):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor with shape (n, c, h, w).
|
|
|
|
Returns:
|
|
Tensor: Forward results.
|
|
"""
|
|
x1 = self.lrelu(self.conv1(x))
|
|
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
|
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
|
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
|
# Emperically, we use 0.2 to scale the residual for better performance
|
|
return x5 * 0.2 + x
|
|
|
|
|
|
class RRDB(nn.Module):
|
|
"""Residual in Residual Dense Block.
|
|
|
|
Used in RRDB-Net in ESRGAN.
|
|
|
|
Args:
|
|
mid_channels (int): Channel number of intermediate features.
|
|
growth_channels (int): Channels for each growth.
|
|
"""
|
|
|
|
def __init__(self, mid_channels, growth_channels=32):
|
|
super(RRDB, self).__init__()
|
|
self.rdb1 = ResidualDenseBlock(mid_channels, growth_channels)
|
|
self.rdb2 = ResidualDenseBlock(mid_channels, growth_channels)
|
|
self.rdb3 = ResidualDenseBlock(mid_channels, growth_channels)
|
|
|
|
def forward(self, x):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor with shape (n, c, h, w).
|
|
|
|
Returns:
|
|
Tensor: Forward results.
|
|
"""
|
|
out = self.rdb1(x)
|
|
out = self.rdb2(out)
|
|
out = self.rdb3(out)
|
|
# Emperically, we use 0.2 to scale the residual for better performance
|
|
return out * 0.2 + x
|
|
|
|
|
|
class RRDBWithBypass(nn.Module):
|
|
"""Residual in Residual Dense Block.
|
|
|
|
Used in RRDB-Net in ESRGAN.
|
|
|
|
Args:
|
|
mid_channels (int): Channel number of intermediate features.
|
|
growth_channels (int): Channels for each growth.
|
|
"""
|
|
|
|
def __init__(self, mid_channels, growth_channels=32):
|
|
super(RRDBWithBypass, self).__init__()
|
|
self.rdb1 = ResidualDenseBlock(mid_channels, growth_channels)
|
|
self.rdb2 = ResidualDenseBlock(mid_channels, growth_channels)
|
|
self.rdb3 = ResidualDenseBlock(mid_channels, growth_channels)
|
|
self.bypass = nn.Sequential(ConvGnSilu(mid_channels*2, mid_channels, kernel_size=3, bias=True, activation=True, norm=True),
|
|
ConvGnSilu(mid_channels, mid_channels//2, kernel_size=3, bias=False, activation=True, norm=False),
|
|
ConvGnSilu(mid_channels//2, 1, kernel_size=3, bias=False, activation=False, norm=False),
|
|
nn.Sigmoid())
|
|
|
|
def forward(self, x):
|
|
"""Forward function.
|
|
|
|
Args:
|
|
x (Tensor): Input tensor with shape (n, c, h, w).
|
|
|
|
Returns:
|
|
Tensor: Forward results.
|
|
"""
|
|
out = self.rdb1(x)
|
|
out = self.rdb2(out)
|
|
out = self.rdb3(out)
|
|
bypass = self.bypass(torch.cat([x, out], dim=1))
|
|
self.bypass_map = bypass.detach().clone()
|
|
# Empirically, we use 0.2 to scale the residual for better performance
|
|
return out * 0.2 * bypass + x
|
|
|
|
|
|
class RRDBNet(nn.Module):
|
|
def __init__(self, in_nc, out_nc, nf, nb, gc=32, scale=4, opt=None):
|
|
self.opt = opt
|
|
super(RRDBNet, self).__init__()
|
|
|
|
bypass = opt_get(self.opt, ['networks', 'generator', 'rrdb_bypass'])
|
|
if bypass:
|
|
RRDB_block_f = functools.partial(RRDBWithBypass, mid_channels=nf, growth_channels=gc)
|
|
else:
|
|
RRDB_block_f = functools.partial(RRDB, mid_channels=nf, growth_channels=gc)
|
|
self.scale = scale
|
|
|
|
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
|
self.body = mutil.make_layer(RRDB_block_f, nb)
|
|
self.conv_body = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
#### upsampling
|
|
self.conv_up1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
self.conv_up2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
if self.scale >= 8:
|
|
self.conv_up3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
if self.scale >= 16:
|
|
self.conv_up4 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
if self.scale >= 32:
|
|
self.conv_up5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
|
|
self.conv_hr = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
|
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
def forward(self, x, get_steps=False):
|
|
fea = self.conv_first(x)
|
|
|
|
block_idxs = opt_get(self.opt, ['networks', 'generator','flow', 'stackRRDB', 'blocks']) or []
|
|
block_results = {}
|
|
|
|
for idx, m in enumerate(self.body.children()):
|
|
fea = m(fea)
|
|
for b in block_idxs:
|
|
if b == idx:
|
|
block_results["block_{}".format(idx)] = fea
|
|
|
|
trunk = self.conv_body(fea)
|
|
|
|
last_lr_fea = fea + trunk
|
|
|
|
fea_up2 = self.conv_up1(F.interpolate(last_lr_fea, scale_factor=2, mode='nearest'))
|
|
fea = self.lrelu(fea_up2)
|
|
|
|
fea_up4 = self.conv_up2(F.interpolate(fea, scale_factor=2, mode='nearest'))
|
|
fea = self.lrelu(fea_up4)
|
|
|
|
fea_up8 = None
|
|
fea_up16 = None
|
|
fea_up32 = None
|
|
|
|
if self.scale >= 8:
|
|
fea_up8 = self.conv_up3(F.interpolate(fea, scale_factor=2, mode='nearest'))
|
|
fea = self.lrelu(fea_up8)
|
|
if self.scale >= 16:
|
|
fea_up16 = self.conv_up4(F.interpolate(fea, scale_factor=2, mode='nearest'))
|
|
fea = self.lrelu(fea_up16)
|
|
if self.scale >= 32:
|
|
fea_up32 = self.conv_up5(F.interpolate(fea, scale_factor=2, mode='nearest'))
|
|
fea = self.lrelu(fea_up32)
|
|
|
|
out = self.conv_last(self.lrelu(self.conv_hr(fea)))
|
|
|
|
if self.scale >= 4:
|
|
results = {'last_lr_fea': last_lr_fea,
|
|
'fea_up1': last_lr_fea,
|
|
'fea_up2': fea_up2,
|
|
'fea_up4': fea_up4,
|
|
'fea_up8': fea_up8,
|
|
'fea_up16': fea_up16,
|
|
'fea_up32': fea_up32,
|
|
'out': out}
|
|
|
|
fea_up0_en = opt_get(self.opt, ['networks', 'generator','flow', 'fea_up0']) or False
|
|
if fea_up0_en:
|
|
results['fea_up0'] = F.interpolate(last_lr_fea, scale_factor=1/2, mode='bilinear', align_corners=False, recompute_scale_factor=True)
|
|
fea_upn1_en = opt_get(self.opt, ['networks', 'generator','flow', 'fea_up-1']) or False
|
|
if fea_upn1_en:
|
|
results['fea_up-1'] = F.interpolate(last_lr_fea, scale_factor=1/4, mode='bilinear', align_corners=False, recompute_scale_factor=True)
|
|
elif self.scale == 2:
|
|
# "Pretend" this is is 4x by shuffling around the inputs a bit.
|
|
half = F.interpolate(last_lr_fea, scale_factor=1/2, mode='bilinear', align_corners=False, recompute_scale_factor=True)
|
|
quarter = F.interpolate(last_lr_fea, scale_factor=1/4, mode='bilinear', align_corners=False, recompute_scale_factor=True)
|
|
eighth = F.interpolate(last_lr_fea, scale_factor=1/8, mode='bilinear', align_corners=False, recompute_scale_factor=True)
|
|
results = {'last_lr_fea': half,
|
|
'fea_up1': half,
|
|
'fea_up2': last_lr_fea,
|
|
'fea_up4': fea_up2,
|
|
'fea_up8': fea_up4,
|
|
'fea_up16': fea_up8,
|
|
'fea_up32': fea_up16,
|
|
'out': out}
|
|
|
|
fea_up0_en = opt_get(self.opt, ['networks', 'generator','flow', 'fea_up0']) or False
|
|
if fea_up0_en:
|
|
results['fea_up0'] = quarter
|
|
fea_upn1_en = opt_get(self.opt, ['networks', 'generator','flow', 'fea_up-1']) or False
|
|
if fea_upn1_en:
|
|
results['fea_up-1'] = eighth
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
if get_steps:
|
|
for k, v in block_results.items():
|
|
results[k] = v
|
|
return results
|
|
else:
|
|
return out
|