DL-Art-School/codes/models/audio/music/transformer_diffusion12.py
2022-06-17 09:08:56 -06:00

756 lines
35 KiB
Python

import itertools
from time import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from models.arch_util import ResBlock
from models.audio.music.gpt_music2 import UpperEncoder, GptMusicLower
from models.audio.music.music_quantizer2 import MusicQuantizer2
from models.audio.tts.lucidrains_dvae import DiscreteVAE
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
from models.diffusion.unet_diffusion import TimestepBlock
from models.lucidrains.x_transformers import Encoder, Attention, RMSScaleShiftNorm, RotaryEmbedding, \
FeedForward
from trainer.networks import register_model
from utils.util import checkpoint, print_network
def is_latent(t):
return t.dtype == torch.float
def is_sequence(t):
return t.dtype == torch.long
class MultiGroupEmbedding(nn.Module):
def __init__(self, tokens, groups, dim):
super().__init__()
self.m = nn.ModuleList([nn.Embedding(tokens, dim // groups) for _ in range(groups)])
def forward(self, x):
h = [embedding(x[:, :, i]) for i, embedding in enumerate(self.m)]
return torch.cat(h, dim=-1)
class TimestepRotaryEmbedSequential(nn.Sequential, TimestepBlock):
def forward(self, x, emb, rotary_emb):
for layer in self:
if isinstance(layer, TimestepBlock):
x = layer(x, emb, rotary_emb)
else:
x = layer(x, rotary_emb)
return x
class SubBlock(nn.Module):
def __init__(self, inp_dim, contraction_dim, heads, dropout):
super().__init__()
self.attn = Attention(inp_dim, out_dim=contraction_dim, heads=heads, dim_head=contraction_dim//heads, causal=False, dropout=dropout)
self.attnorm = nn.LayerNorm(contraction_dim)
self.ff = nn.Conv1d(inp_dim+contraction_dim, contraction_dim, kernel_size=3, padding=1)
self.ffnorm = nn.LayerNorm(contraction_dim)
def forward(self, x, rotary_emb):
ah, _, _, _ = checkpoint(self.attn, x, None, None, None, None, None, rotary_emb)
ah = F.gelu(self.attnorm(ah))
h = torch.cat([ah, x], dim=-1)
hf = checkpoint(self.ff, h.permute(0,2,1)).permute(0,2,1)
hf = F.gelu(self.ffnorm(hf))
h = torch.cat([h, hf], dim=-1)
return h
class ConcatAttentionBlock(TimestepBlock):
def __init__(self, trunk_dim, contraction_dim, time_embed_dim, heads, dropout):
super().__init__()
self.prenorm = RMSScaleShiftNorm(trunk_dim, embed_dim=time_embed_dim, bias=False)
self.block1 = SubBlock(trunk_dim, contraction_dim, heads, dropout)
self.block2 = SubBlock(trunk_dim+contraction_dim*2, contraction_dim, heads, dropout)
self.out = nn.Linear(contraction_dim*4, trunk_dim, bias=False)
self.out.weight.data.zero_()
def forward(self, x, timestep_emb, rotary_emb):
h = self.prenorm(x, norm_scale_shift_inp=timestep_emb)
h = self.block1(h, rotary_emb)
h = self.block2(h, rotary_emb)
h = self.out(h[:,:,x.shape[-1]:])
return h + x
class TransformerDiffusion(nn.Module):
"""
A diffusion model composed entirely of stacks of transformer layers. Why would you do it any other way?
"""
def __init__(
self,
prenet_channels=1024,
prenet_layers=3,
time_embed_dim=256,
model_channels=1024,
contraction_dim=256,
num_layers=8,
in_channels=256,
rotary_emb_dim=32,
input_vec_dim=1024,
out_channels=512, # mean and variance
num_heads=4,
dropout=0,
use_fp16=False,
ar_prior=False,
# Parameters for regularization.
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
# Parameters for re-training head
freeze_except_code_converters=False,
):
super().__init__()
self.in_channels = in_channels
self.model_channels = model_channels
self.prenet_channels = prenet_channels
self.time_embed_dim = time_embed_dim
self.out_channels = out_channels
self.dropout = dropout
self.unconditioned_percentage = unconditioned_percentage
self.enable_fp16 = use_fp16
self.inp_block = conv_nd(1, in_channels, prenet_channels, 3, 1, 1)
self.time_embed = nn.Sequential(
linear(time_embed_dim, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
self.ar_prior = ar_prior
prenet_heads = prenet_channels//64
if ar_prior:
self.ar_input = nn.Linear(input_vec_dim, prenet_channels)
self.ar_prior_intg = Encoder(
dim=prenet_channels,
depth=prenet_layers,
heads=prenet_heads,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
zero_init_branch_output=True,
ff_mult=1,
)
else:
self.input_converter = nn.Linear(input_vec_dim, prenet_channels)
self.code_converter = Encoder(
dim=prenet_channels,
depth=prenet_layers,
heads=prenet_heads,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
zero_init_branch_output=True,
ff_mult=1,
)
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,prenet_channels))
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
self.intg = nn.Linear(prenet_channels*2, model_channels)
self.layers = TimestepRotaryEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, time_embed_dim, num_heads, dropout) for _ in range(num_layers)])
self.out = nn.Sequential(
normalization(model_channels),
nn.SiLU(),
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
)
if freeze_except_code_converters:
for p in self.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
if hasattr(self, 'ar_input'):
for m in [self.ar_input and self.ar_prior_intg]:
for p in m.parameters():
del p.DO_NOT_TRAIN
p.requires_grad = True
if hasattr(self, 'code_converter'):
for m in [self.code_converter and self.input_converter]:
for p in m.parameters():
del p.DO_NOT_TRAIN
p.requires_grad = True
self.debug_codes = {}
def get_grad_norm_parameter_groups(self):
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.layers]))
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.layers]))
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.layers]))
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.layers]))
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.layers]))
groups = {
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.layers])),
'blk1_attention_layers': attn1,
'blk2_attention_layers': attn2,
'attention_layers': attn1 + attn2,
'blk1_ff_layers': ff1,
'blk2_ff_layers': ff2,
'ff_layers': ff1 + ff2,
'block_out_layers': blkout_layers,
'rotary_embeddings': list(self.rotary_embeddings.parameters()),
'out': list(self.out.parameters()),
'x_proj': list(self.inp_block.parameters()),
'layers': list(self.layers.parameters()),
#'code_converters': list(self.input_converter.parameters()) + list(self.code_converter.parameters()),
'time_embed': list(self.time_embed.parameters()),
}
return groups
def timestep_independent(self, prior, expected_seq_len):
code_emb = self.ar_input(prior) if self.ar_prior else self.input_converter(prior)
code_emb = self.ar_prior_intg(code_emb) if self.ar_prior else self.code_converter(code_emb)
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
device=code_emb.device) < self.unconditioned_percentage
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(prior.shape[0], 1, 1),
code_emb)
expanded_code_emb = F.interpolate(code_emb.permute(0,2,1), size=expected_seq_len, mode='nearest').permute(0,2,1)
return expanded_code_emb
def forward(self, x, timesteps, codes=None, conditioning_input=None, precomputed_code_embeddings=None, conditioning_free=False):
if precomputed_code_embeddings is not None:
assert codes is None and conditioning_input is None, "Do not provide precomputed embeddings and the other parameters. It is unclear what you want me to do here."
unused_params = []
if conditioning_free:
code_emb = self.unconditioned_embedding.repeat(x.shape[0], x.shape[-1], 1)
else:
if precomputed_code_embeddings is not None:
code_emb = precomputed_code_embeddings
else:
code_emb = self.timestep_independent(codes, x.shape[-1])
unused_params.append(self.unconditioned_embedding)
with torch.autocast(x.device.type, enabled=self.enable_fp16):
blk_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim))
x = self.inp_block(x).permute(0,2,1)
rotary_pos_emb = self.rotary_embeddings(x.shape[1], x.device)
x = self.intg(torch.cat([x, code_emb], dim=-1))
for layer in self.layers:
x = checkpoint(layer, x, blk_emb, rotary_pos_emb)
x = x.float().permute(0,2,1)
out = self.out(x)
# Involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
extraneous_addition = 0
for p in unused_params:
extraneous_addition = extraneous_addition + p.mean()
out = out + extraneous_addition * 0
return out
class TransformerDiffusionWithQuantizer(nn.Module):
def __init__(self, quantizer_dims=[1024], quantizer_codebook_size=256, quantizer_codebook_groups=2,
freeze_quantizer_until=20000, **kwargs):
super().__init__()
self.internal_step = 0
self.freeze_quantizer_until = freeze_quantizer_until
self.diff = TransformerDiffusion(**kwargs)
self.quantizer = MusicQuantizer2(inp_channels=kwargs['in_channels'], inner_dim=quantizer_dims,
codevector_dim=quantizer_dims[0], codebook_size=quantizer_codebook_size,
codebook_groups=quantizer_codebook_groups, max_gumbel_temperature=4,
min_gumbel_temperature=.5)
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
del self.quantizer.up
def update_for_step(self, step, *args):
self.internal_step = step
qstep = max(0, self.internal_step - self.freeze_quantizer_until)
self.quantizer.quantizer.temperature = max(
self.quantizer.max_gumbel_temperature * self.quantizer.gumbel_temperature_decay ** qstep,
self.quantizer.min_gumbel_temperature,
)
def forward(self, x, timesteps, truth_mel, conditioning_input=None, disable_diversity=False, conditioning_free=False):
quant_grad_enabled = self.internal_step > self.freeze_quantizer_until
with torch.set_grad_enabled(quant_grad_enabled):
proj, diversity_loss = self.quantizer(truth_mel, return_decoder_latent=True)
proj = proj.permute(0,2,1)
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
if not quant_grad_enabled:
unused = 0
for p in self.quantizer.parameters():
unused = unused + p.mean() * 0
proj = proj + unused
diversity_loss = diversity_loss * 0
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
if disable_diversity:
return diff
return diff, diversity_loss
def get_debug_values(self, step, __):
if self.quantizer.total_codes > 0:
return {'histogram_quant_codes': self.quantizer.codes[:self.quantizer.total_codes],
'gumbel_temperature': self.quantizer.quantizer.temperature}
else:
return {}
def get_grad_norm_parameter_groups(self):
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.diff.layers]))
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.diff.layers]))
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.diff.layers]))
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.diff.layers]))
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers]))
groups = {
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers])),
'blk1_attention_layers': attn1,
'blk2_attention_layers': attn2,
'attention_layers': attn1 + attn2,
'blk1_ff_layers': ff1,
'blk2_ff_layers': ff2,
'ff_layers': ff1 + ff2,
'block_out_layers': blkout_layers,
'quantizer_encoder': list(self.quantizer.encoder.parameters()),
'quant_codebook': [self.quantizer.quantizer.codevectors],
'rotary_embeddings': list(self.diff.rotary_embeddings.parameters()),
'out': list(self.diff.out.parameters()),
'x_proj': list(self.diff.inp_block.parameters()),
'layers': list(self.diff.layers.parameters()),
'code_converters': list(self.diff.input_converter.parameters()) + list(self.diff.code_converter.parameters()),
'time_embed': list(self.diff.time_embed.parameters()),
}
return groups
def before_step(self, step):
scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers])) + \
list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers]))
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
# directly fiddling with the gradients.
for p in scaled_grad_parameters:
p.grad *= .2
class TransformerDiffusionWithARPrior(nn.Module):
def __init__(self, freeze_diff=False, **kwargs):
super().__init__()
self.internal_step = 0
from models.audio.music.gpt_music import GptMusicLower
self.ar = GptMusicLower(dim=512, layers=12)
for p in self.ar.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
self.diff = TransformerDiffusion(ar_prior=True, **kwargs)
if freeze_diff:
for p in self.diff.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
for p in list(self.diff.ar_prior_intg.parameters()) + list(self.diff.ar_input.parameters()):
del p.DO_NOT_TRAIN
p.requires_grad = True
def get_grad_norm_parameter_groups(self):
groups = {
'attention_layers': list(itertools.chain.from_iterable([lyr.attn.parameters() for lyr in self.diff.layers])),
'ff_layers': list(itertools.chain.from_iterable([lyr.ff.parameters() for lyr in self.diff.layers])),
'rotary_embeddings': list(self.diff.rotary_embeddings.parameters()),
'out': list(self.diff.out.parameters()),
'x_proj': list(self.diff.inp_block.parameters()),
'layers': list(self.diff.layers.parameters()),
'ar_prior_intg': list(self.diff.ar_prior_intg.parameters()),
'time_embed': list(self.diff.time_embed.parameters()),
}
return groups
def forward(self, x, timesteps, truth_mel, disable_diversity=False, conditioning_input=None, conditioning_free=False):
with torch.no_grad():
prior = self.ar(truth_mel, conditioning_input, return_latent=True)
diff = self.diff(x, timesteps, prior, conditioning_free=conditioning_free)
return diff
class TransformerDiffusionWithPretrainedVqvae(nn.Module):
def __init__(self, vqargs, **kwargs):
super().__init__()
self.internal_step = 0
self.diff = TransformerDiffusion(**kwargs)
self.quantizer = DiscreteVAE(**vqargs)
self.quantizer = self.quantizer.eval()
for p in self.quantizer.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
def forward(self, x, timesteps, truth_mel, conditioning_input=None, disable_diversity=False, conditioning_free=False):
with torch.no_grad():
reconstructed, proj = self.quantizer.infer(truth_mel)
proj = proj.permute(0,2,1)
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
return diff
def get_debug_values(self, step, __):
if self.quantizer.total_codes > 0:
return {'histogram_quant_codes': self.quantizer.codes[:self.quantizer.total_codes]}
else:
return {}
def get_grad_norm_parameter_groups(self):
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.diff.layers]))
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.diff.layers]))
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.diff.layers]))
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.diff.layers]))
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers]))
groups = {
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers])),
'blk1_attention_layers': attn1,
'blk2_attention_layers': attn2,
'attention_layers': attn1 + attn2,
'blk1_ff_layers': ff1,
'blk2_ff_layers': ff2,
'ff_layers': ff1 + ff2,
'block_out_layers': blkout_layers,
'rotary_embeddings': list(self.diff.rotary_embeddings.parameters()),
'out': list(self.diff.out.parameters()),
'x_proj': list(self.diff.inp_block.parameters()),
'layers': list(self.diff.layers.parameters()),
#'code_converters': list(self.diff.input_converter.parameters()) + list(self.diff.code_converter.parameters()),
'time_embed': list(self.diff.time_embed.parameters()),
}
return groups
def before_step(self, step):
scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers])) + \
list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers]))
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
# directly fiddling with the gradients.
for p in scaled_grad_parameters:
p.grad *= .2
class TransformerDiffusionWithMultiPretrainedVqvae(nn.Module):
def __init__(self, num_vaes=4, vqargs={}, **kwargs):
super().__init__()
self.internal_step = 0
self.diff = TransformerDiffusion(**kwargs)
self.quantizers = nn.ModuleList([DiscreteVAE(**vqargs).eval() for _ in range(num_vaes)])
for p in self.quantizers.parameters():
p.DO_NOT_TRAIN = True
p.requires_grad = False
def forward(self, x, timesteps, truth_mel, conditioning_input=None, disable_diversity=False, conditioning_free=False):
with torch.no_grad():
proj = []
partition_size = truth_mel.shape[1] // len(self.quantizers)
for i, q in enumerate(self.quantizers):
mel_partition = truth_mel[:, i*partition_size:(i+1)*partition_size]
_, p = q.infer(mel_partition)
proj.append(p.permute(0,2,1))
proj = torch.cat(proj, dim=-1)
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
return diff
def get_debug_values(self, step, __):
if self.quantizers[0].total_codes > 0:
dbgs = {}
for i in range(len(self.quantizers)):
dbgs[f'histogram_quant{i}_codes'] = self.quantizers[i].codes[:self.quantizers[i].total_codes]
return dbgs
else:
return {}
def get_grad_norm_parameter_groups(self):
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.diff.layers]))
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.diff.layers]))
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.diff.layers]))
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.diff.layers]))
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers]))
groups = {
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers])),
'blk1_attention_layers': attn1,
'blk2_attention_layers': attn2,
'attention_layers': attn1 + attn2,
'blk1_ff_layers': ff1,
'blk2_ff_layers': ff2,
'ff_layers': ff1 + ff2,
'block_out_layers': blkout_layers,
'rotary_embeddings': list(self.diff.rotary_embeddings.parameters()),
'out': list(self.diff.out.parameters()),
'x_proj': list(self.diff.inp_block.parameters()),
'layers': list(self.diff.layers.parameters()),
'code_converters': list(self.diff.input_converter.parameters()) + list(self.diff.code_converter.parameters()),
'time_embed': list(self.diff.time_embed.parameters()),
}
return groups
def before_step(self, step):
scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers])) + \
list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers]))
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
# directly fiddling with the gradients.
for p in scaled_grad_parameters:
p.grad *= .2
class TransformerDiffusionWithCheaterLatent(nn.Module):
def __init__(self, freeze_encoder_until=50000, **kwargs):
super().__init__()
self.internal_step = 0
self.freeze_encoder_until = freeze_encoder_until
self.diff = TransformerDiffusion(**kwargs)
self.encoder = UpperEncoder(256, 1024, 256)
self.encoder = self.encoder.eval()
def forward(self, x, timesteps, truth_mel, conditioning_input=None, disable_diversity=False, conditioning_free=False):
encoder_grad_enabled = self.internal_step > self.freeze_encoder_until
with torch.set_grad_enabled(encoder_grad_enabled):
proj = self.encoder(truth_mel).permute(0,2,1)
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
return diff
def get_debug_values(self, step, __):
self.internal_step = step
def get_grad_norm_parameter_groups(self):
attn1 = list(itertools.chain.from_iterable([lyr.block1.attn.parameters() for lyr in self.diff.layers]))
attn2 = list(itertools.chain.from_iterable([lyr.block2.attn.parameters() for lyr in self.diff.layers]))
ff1 = list(itertools.chain.from_iterable([lyr.block1.ff.parameters() for lyr in self.diff.layers]))
ff2 = list(itertools.chain.from_iterable([lyr.block2.ff.parameters() for lyr in self.diff.layers]))
blkout_layers = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers]))
groups = {
'prenorms': list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers])),
'blk1_attention_layers': attn1,
'blk2_attention_layers': attn2,
'attention_layers': attn1 + attn2,
'blk1_ff_layers': ff1,
'blk2_ff_layers': ff2,
'ff_layers': ff1 + ff2,
'block_out_layers': blkout_layers,
'rotary_embeddings': list(self.diff.rotary_embeddings.parameters()),
'out': list(self.diff.out.parameters()),
'x_proj': list(self.diff.inp_block.parameters()),
'layers': list(self.diff.layers.parameters()),
'code_converters': list(self.diff.input_converter.parameters()) + list(self.diff.code_converter.parameters()),
'time_embed': list(self.diff.time_embed.parameters()),
'encoder': list(self.encoder.parameters()),
}
return groups
def before_step(self, step):
scaled_grad_parameters = list(itertools.chain.from_iterable([lyr.out.parameters() for lyr in self.diff.layers])) + \
list(itertools.chain.from_iterable([lyr.prenorm.parameters() for lyr in self.diff.layers]))
# Scale back the gradients of the blkout and prenorm layers by a constant factor. These get two orders of magnitudes
# higher gradients. Ideally we would use parameter groups, but ZeroRedundancyOptimizer makes this trickier than
# directly fiddling with the gradients.
for p in scaled_grad_parameters:
p.grad *= .2
@register_model
def register_transformer_diffusion12(opt_net, opt):
return TransformerDiffusion(**opt_net['kwargs'])
@register_model
def register_transformer_diffusion12_with_quantizer(opt_net, opt):
return TransformerDiffusionWithQuantizer(**opt_net['kwargs'])
@register_model
def register_transformer_diffusion12_with_ar_prior(opt_net, opt):
return TransformerDiffusionWithARPrior(**opt_net['kwargs'])
@register_model
def register_transformer_diffusion_12_with_pretrained_vqvae(opt_net, opt):
return TransformerDiffusionWithPretrainedVqvae(**opt_net['kwargs'])
@register_model
def register_transformer_diffusion_12_with_multi_vqvae(opt_net, opt):
return TransformerDiffusionWithMultiPretrainedVqvae(**opt_net['kwargs'])
@register_model
def register_transformer_diffusion_12_with_cheater_latent(opt_net, opt):
return TransformerDiffusionWithCheaterLatent(**opt_net['kwargs'])
def test_quant_model():
clip = torch.randn(2, 256, 400)
ts = torch.LongTensor([600, 600])
# For music:
model = TransformerDiffusionWithQuantizer(in_channels=256, model_channels=1536, contraction_dim=768,
prenet_channels=1024, num_heads=10,
input_vec_dim=1024, num_layers=24, prenet_layers=4,
dropout=.1)
quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant_r4\\models\\5000_generator.pth')
model.quantizer.load_state_dict(quant_weights, strict=False)
torch.save(model.state_dict(), 'sample.pth')
print_network(model)
o = model(clip, ts, clip)
pg = model.get_grad_norm_parameter_groups()
t = 0
for k, vs in pg.items():
s = 0
for v in vs:
m = 1
for d in v.shape:
m *= d
s += m
t += s
print(k, s/1000000)
print(t)
def test_vqvae_model():
clip = torch.randn(2, 100, 400)
cond = torch.randn(2,80,400)
ts = torch.LongTensor([600, 600])
# For music:
model = TransformerDiffusionWithPretrainedVqvae(in_channels=100, out_channels=200,
model_channels=1024, contraction_dim=512,
prenet_channels=1024, num_heads=8,
input_vec_dim=512, num_layers=12, prenet_layers=6, ar_prior=True,
dropout=.1, vqargs= {
'positional_dims': 1, 'channels': 80,
'hidden_dim': 512, 'num_resnet_blocks': 3, 'codebook_dim': 512, 'num_tokens': 8192,
'num_layers': 2, 'record_codes': True, 'kernel_size': 3, 'use_transposed_convs': False,
}
)
quant_weights = torch.load('D:\\dlas\\experiments\\retrained_dvae_8192_clips.pth')
model.quantizer.load_state_dict(quant_weights, strict=True)
torch.save(model.state_dict(), 'sample.pth')
print_network(model)
o = model(clip, ts, cond)
pg = model.get_grad_norm_parameter_groups()
"""
with torch.no_grad():
proj = torch.randn(2, 100, 512).cuda()
clip = clip.cuda()
ts = ts.cuda()
start = time()
model = model.cuda().eval()
model.diff.enable_fp16 = True
ti = model.diff.timestep_independent(proj, clip.shape[2])
for k in range(100):
model.diff(clip, ts, precomputed_code_embeddings=ti)
print(f"Elapsed: {time()-start}")
"""
def test_multi_vqvae_model():
clip = torch.randn(2, 256, 400)
cond = torch.randn(2,256,400)
ts = torch.LongTensor([600, 600])
# For music:
model = TransformerDiffusionWithMultiPretrainedVqvae(in_channels=256, out_channels=512,
model_channels=1024, contraction_dim=512,
prenet_channels=1024, num_heads=8,
input_vec_dim=2048, num_layers=12, prenet_layers=6,
dropout=.1, vqargs= {
'positional_dims': 1, 'channels': 64,
'hidden_dim': 512, 'num_resnet_blocks': 3, 'codebook_dim': 512, 'num_tokens': 8192,
'num_layers': 0, 'record_codes': True, 'kernel_size': 3, 'use_transposed_convs': False,
}, num_vaes=4,
)
quants = ['X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_low\\models\\7500_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_mid_low\\models\\11000_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_mid_high\\models\\11500_generator.pth',
'X:\\dlas\\experiments\\music_vqvaes\\train_lrdvae_music_high\\models\\11500_generator.pth']
for i, qfile in enumerate(quants):
quant_weights = torch.load(qfile)
model.quantizers[i].load_state_dict(quant_weights, strict=True)
torch.save(model.state_dict(), 'sample.pth')
print_network(model)
o = model(clip, ts, cond)
pg = model.get_grad_norm_parameter_groups()
model.diff.get_grad_norm_parameter_groups()
def test_ar_model():
clip = torch.randn(2, 256, 400)
cond = torch.randn(2, 256, 400)
ts = torch.LongTensor([600, 600])
model = TransformerDiffusionWithARPrior(model_channels=2048, prenet_channels=1536,
input_vec_dim=512, num_layers=16, prenet_layers=6, freeze_diff=True,
unconditioned_percentage=.4)
model.get_grad_norm_parameter_groups()
ar_weights = torch.load('D:\\dlas\\experiments\\train_music_gpt\\models\\44500_generator_ema.pth')
model.ar.load_state_dict(ar_weights, strict=True)
diff_weights = torch.load('X:\\dlas\\experiments\\train_music_diffusion_tfd8\\models\\47500_generator_ema.pth')
pruned_diff_weights = {}
for k,v in diff_weights.items():
if k.startswith('diff.'):
pruned_diff_weights[k.replace('diff.', '')] = v
model.diff.load_state_dict(pruned_diff_weights, strict=False)
torch.save(model.state_dict(), 'sample.pth')
model(clip, ts, cond, conditioning_input=cond)
def test_cheater_model():
clip = torch.randn(2, 256, 400)
ts = torch.LongTensor([600, 600])
# For music:
model = TransformerDiffusionWithCheaterLatent(in_channels=256, out_channels=512,
model_channels=1024, contraction_dim=512,
prenet_channels=1024, num_heads=8,
input_vec_dim=256, num_layers=12, prenet_layers=6,
dropout=.1,
)
diff_weights = torch.load('extracted_diff.pth')
model.diff.load_state_dict(diff_weights, strict=False)
cheater_ar_weights = torch.load('X:\\dlas\\experiments\\train_music_gpt_cheater\\models\\19500_generator_ema.pth')
cheater_ar = GptMusicLower(dim=1024, encoder_out_dim=256, layers=16, fp16=False, num_target_vectors=8192, num_vaes=4,
vqargs= {'positional_dims': 1, 'channels': 64,
'hidden_dim': 512, 'num_resnet_blocks': 3, 'codebook_dim': 512, 'num_tokens': 8192,
'num_layers': 0, 'record_codes': True, 'kernel_size': 3, 'use_transposed_convs': False,
})
cheater_ar.load_state_dict(cheater_ar_weights)
model.encoder.load_state_dict(cheater_ar.upper_encoder.state_dict(), strict=True)
torch.save(model.state_dict(), 'sample.pth')
print_network(model)
o = model(clip, ts, clip)
pg = model.get_grad_norm_parameter_groups()
def extract_diff(in_f, out_f, remove_head=False):
p = torch.load(in_f)
out = {}
for k, v in p.items():
if k.startswith('diff.'):
if remove_head and (k.startswith('diff.input_converter') or k.startswith('diff.code_converter')):
continue
out[k.replace('diff.', '')] = v
torch.save(out, out_f)
if __name__ == '__main__':
#extract_diff('X:\\dlas\\experiments\\train_music_diffusion_tfd12\\models\\41000_generator_ema.pth', 'extracted_diff.pth', True)
test_cheater_model()