forked from mrq/DL-Art-School
66 lines
2.9 KiB
Python
66 lines
2.9 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
|
|
from models.arch_util import ConvGnLelu
|
|
from models.stylegan.stylegan2_rosinality import Generator
|
|
|
|
|
|
class Stylegan2LatentBank(nn.Module):
|
|
def __init__(self, pretrained_model_file, encoder_nf=64, max_dim=1024, latent_dim=512, encoder_levels=4, decoder_levels=3):
|
|
super().__init__()
|
|
|
|
# Initialize the bank.
|
|
self.bank = Generator(size=max_dim, style_dim=latent_dim, n_mlp=8, channel_multiplier=2) # Assumed using 'f' generators with mult=2.
|
|
state_dict = torch.load(pretrained_model_file)
|
|
self.bank.load_state_dict(state_dict, strict=True)
|
|
|
|
# Shut off training of the latent bank.
|
|
for p in self.bank.parameters():
|
|
p.requires_grad = False
|
|
p.DO_NOT_TRAIN = True
|
|
|
|
# TODO: Compute these based on the underlying stylegans channels member variable.
|
|
stylegan_encoder_dims = [512, 512, 512, 512]
|
|
|
|
# Initialize the fusion blocks. TODO: Try using the StyledConvs instead of regular ones.
|
|
encoder_output_dims = reversed([64 * 2 ** i for i in range(encoder_levels)])
|
|
input_dims_by_layer = [eod + sed for eod, sed in zip(encoder_output_dims, stylegan_encoder_dims)]
|
|
self.fusion_blocks = nn.ModuleList([ConvGnLelu(in_filters, out_filters, kernel_size=3, activation=True, norm=False, bias=True)
|
|
for in_filters, out_filters in zip(input_dims_by_layer, stylegan_encoder_dims)])
|
|
|
|
self.decoder_levels = decoder_levels
|
|
self.decoder_start = encoder_levels - 1
|
|
self.total_levels = encoder_levels + decoder_levels - 1
|
|
|
|
# This forward mirrors the forward() pass from the rosinality stylegan2 implementation, with the additions called
|
|
# for from the GLEAN paper. GLEAN mods are annotated with comments.
|
|
# Removed stuff:
|
|
# - Support for split latents (we're spoonfeeding them)
|
|
# - Support for fixed noise inputs
|
|
# - RGB computations -> we only care about the latents
|
|
# - Style MLP -> GLEAN computes the Style inputs directly.
|
|
# - Later layers -> GLEAN terminates at 256 resolution.
|
|
def forward(self, convolutional_features, latent_vectors):
|
|
|
|
out = self.bank.input(latent_vectors[:, 0]) # The input here is only used to fetch the batch size.
|
|
out = self.bank.conv1(out, latent_vectors[:, 0], noise=None)
|
|
|
|
k = 0
|
|
decoder_outputs = []
|
|
for conv1, conv2 in zip(self.bank.convs[::2], self.bank.convs[1::2]):
|
|
if k < len(self.fusion_blocks):
|
|
out = torch.cat([convolutional_features[-k-1], out], dim=1)
|
|
out = self.fusion_blocks[k](out)
|
|
|
|
out = conv1(out, latent_vectors[:, k], noise=None)
|
|
out = conv2(out, latent_vectors[:, k], noise=None)
|
|
|
|
if k >= self.decoder_start:
|
|
decoder_outputs.append(out)
|
|
if k >= self.total_levels:
|
|
break
|
|
|
|
k += 1
|
|
|
|
return decoder_outputs
|