import os import sys import argparse import yaml """ if 'BITSANDBYTES_OVERRIDE_LINEAR' not in os.environ: os.environ['BITSANDBYTES_OVERRIDE_LINEAR'] = '0' if 'BITSANDBYTES_OVERRIDE_EMBEDDING' not in os.environ: os.environ['BITSANDBYTES_OVERRIDE_EMBEDDING'] = '1' if 'BITSANDBYTES_OVERRIDE_ADAM' not in os.environ: os.environ['BITSANDBYTES_OVERRIDE_ADAM'] = '1' if 'BITSANDBYTES_OVERRIDE_ADAMW' not in os.environ: os.environ['BITSANDBYTES_OVERRIDE_ADAMW'] = '1' """ if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_vit_latent.yml', nargs='+') # ugh parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--mode', type=str, default='none', help='mode') args = parser.parse_args() args.opt = " ".join(args.opt) # absolutely disgusting with open(args.opt, 'r') as file: opt_config = yaml.safe_load(file) if "ext" in opt_config and "bitsandbytes" in opt_config["ext"] and not opt_config["ext"]["bitsandbytes"]: os.environ['BITSANDBYTES_OVERRIDE_LINEAR'] = '0' os.environ['BITSANDBYTES_OVERRIDE_EMBEDDING'] = '0' os.environ['BITSANDBYTES_OVERRIDE_ADAM'] = '0' os.environ['BITSANDBYTES_OVERRIDE_ADAMW'] = '0' # this is some massive kludge that only works if it's called from a shell and not an import/PIP package # it's smart-yet-irritating module-model loader breaks when trying to load something specifically when not from a shell sys.path.insert(0, './modules/dlas/codes/') # this is also because DLAS is not written as a package in mind # it'll gripe when it wants to import from train.py sys.path.insert(0, './modules/dlas/') # for PIP, replace it with: # sys.path.insert(0, os.path.dirname(os.path.realpath(dlas.__file__))) # sys.path.insert(0, f"{os.path.dirname(os.path.realpath(dlas.__file__))}/../") # don't even really bother trying to get DLAS PIP'd # without kludge, it'll have to be accessible as `codes` and not `dlas` import torch import datetime from codes import train as tr from utils import util, options as option from torch.distributed.run import main # this is effectively just copy pasted and cleaned up from the __main__ section of training.py # I'll clean it up better def train(yaml, launcher='none'): opt = option.parse(yaml, is_train=True) if launcher == 'none' and opt['gpus'] > 1: return main([f"--nproc_per_node={opt['gpus']}", "--master_port=1234", "./src/train.py", "-opt", yaml, "--launcher=pytorch"]) trainer = tr.Trainer() #### distributed training settings if launcher == 'none': # disabled distributed training opt['dist'] = False trainer.rank = -1 if len(opt['gpu_ids']) == 1: torch.cuda.set_device(opt['gpu_ids'][0]) print('Disabled distributed training.') else: opt['dist'] = True tr.init_dist('nccl', timeout=datetime.timedelta(seconds=5*60)) trainer.world_size = torch.distributed.get_world_size() trainer.rank = torch.distributed.get_rank() torch.cuda.set_device(torch.distributed.get_rank()) trainer.init(yaml, opt, launcher, '') trainer.do_training() if __name__ == "__main__": try: import torch_intermediary if torch_intermediary.OVERRIDE_ADAM: print("Using BitsAndBytes optimizations") else: print("NOT using BitsAndBytes optimizations") except Exception as e: pass train(args.opt, args.launcher)