diff --git a/codes/trainer/eval/music_diffusion_fid.py b/codes/trainer/eval/music_diffusion_fid.py index dfc2681e..982ba81e 100644 --- a/codes/trainer/eval/music_diffusion_fid.py +++ b/codes/trainer/eval/music_diffusion_fid.py @@ -79,6 +79,9 @@ class MusicDiffusionFid(evaluator.Evaluator): self.diffusion_fn = self.perform_reconstruction_from_cheater_gen self.local_modules['cheater_encoder'] = get_cheater_encoder() self.local_modules['cheater_decoder'] = get_cheater_decoder() + self.cheater_decoder_diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [32]), model_mean_type='epsilon', + model_var_type='learned_range', loss_type='mse', betas=get_named_beta_schedule('linear', 4000), + conditioning_free=True, conditioning_free_k=1) self.spec_decoder = get_mel2wav_v3_model() # The only reason the other functions don't use v3 is because earlier models were trained with v1 and I want to keep metrics consistent. self.local_modules['spec_decoder'] = self.spec_decoder @@ -215,7 +218,7 @@ class MusicDiffusionFid(evaluator.Evaluator): gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True, model_kwargs={'conditioning_input': cheater}) # 2. Decode the cheater into a MEL - gen_mel = self.diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,gen_cheater.shape[-1]*16), progress=True, + gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,gen_cheater.shape[-1]*16), progress=True, model_kwargs={'codes': gen_cheater.permute(0,2,1)}) # 3. And then the MEL back into a spectrogram @@ -303,7 +306,7 @@ class MusicDiffusionFid(evaluator.Evaluator): if __name__ == '__main__': diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen_r8.yml', 'generator', also_load_savepoint=False, - load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5\\models\\18000_generator_ema.pth' + load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5\\models\\46000_generator_ema.pth' ).cuda() opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :) #'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety.