forked from mrq/DL-Art-School
Make it even better
This commit is contained in:
parent
e735d8e1fa
commit
723f324eda
|
@ -76,28 +76,26 @@ class DiffusionTtsFlat(nn.Module):
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
self.latent_converter = nn.Conv1d(in_latent_channels, model_channels, 1)
|
self.latent_converter = nn.Conv1d(in_latent_channels, model_channels, 1)
|
||||||
if in_channels > 60: # It's a spectrogram.
|
# The contextual embedder processes a sample MEL that the output should be "like".
|
||||||
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
|
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
|
||||||
CheckpointedXTransformerEncoder(
|
CheckpointedXTransformerEncoder(
|
||||||
needs_permute=True,
|
needs_permute=True,
|
||||||
max_seq_len=-1,
|
max_seq_len=-1,
|
||||||
use_pos_emb=False,
|
use_pos_emb=False,
|
||||||
attn_layers=Encoder(
|
attn_layers=Encoder(
|
||||||
dim=model_channels,
|
dim=model_channels,
|
||||||
depth=4,
|
depth=4,
|
||||||
heads=num_heads,
|
heads=num_heads,
|
||||||
ff_dropout=dropout,
|
ff_dropout=dropout,
|
||||||
attn_dropout=dropout,
|
attn_dropout=dropout,
|
||||||
use_rmsnorm=True,
|
use_rmsnorm=True,
|
||||||
ff_glu=True,
|
ff_glu=True,
|
||||||
rotary_emb_dim=True,
|
rotary_emb_dim=True,
|
||||||
)
|
)
|
||||||
))
|
))
|
||||||
else:
|
|
||||||
self.contextual_embedder = AudioMiniEncoder(1, model_channels, base_channels=32, depth=6, resnet_blocks=1,
|
|
||||||
attn_blocks=3, num_attn_heads=8, dropout=dropout, downsample_factor=4, kernel_size=5)
|
|
||||||
self.conditioning_conv = nn.Conv1d(model_channels*2, model_channels, 1)
|
self.conditioning_conv = nn.Conv1d(model_channels*2, model_channels, 1)
|
||||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
|
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
|
||||||
|
# This is a further encoder extension that integrates a timestep signal into the conditioning signal.
|
||||||
self.conditioning_timestep_integrator = CheckpointedXTransformerEncoder(
|
self.conditioning_timestep_integrator = CheckpointedXTransformerEncoder(
|
||||||
needs_permute=True,
|
needs_permute=True,
|
||||||
max_seq_len=-1,
|
max_seq_len=-1,
|
||||||
|
@ -117,6 +115,7 @@ class DiffusionTtsFlat(nn.Module):
|
||||||
)
|
)
|
||||||
self.integrate_conditioning = nn.Conv1d(model_channels*2, model_channels, 1)
|
self.integrate_conditioning = nn.Conv1d(model_channels*2, model_channels, 1)
|
||||||
|
|
||||||
|
# This is the main processing module.
|
||||||
self.layers = CheckpointedXTransformerEncoder(
|
self.layers = CheckpointedXTransformerEncoder(
|
||||||
needs_permute=True,
|
needs_permute=True,
|
||||||
max_seq_len=-1,
|
max_seq_len=-1,
|
||||||
|
@ -151,18 +150,7 @@ class DiffusionTtsFlat(nn.Module):
|
||||||
}
|
}
|
||||||
return groups
|
return groups
|
||||||
|
|
||||||
def forward(self, x, timesteps, aligned_conditioning, conditioning_input, conditioning_free=False):
|
def get_conditioning_encodings(self, aligned_conditioning, conditioning_input, conditioning_free, return_unused=False):
|
||||||
"""
|
|
||||||
Apply the model to an input batch.
|
|
||||||
|
|
||||||
:param x: an [N x C x ...] Tensor of inputs.
|
|
||||||
:param timesteps: a 1-D batch of timesteps.
|
|
||||||
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
|
|
||||||
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
|
|
||||||
:param lr_input: for super-sampling models, a guidance audio clip at a lower sampling rate.
|
|
||||||
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
|
|
||||||
:return: an [N x C x ...] Tensor of outputs.
|
|
||||||
"""
|
|
||||||
# Shuffle aligned_latent to BxCxS format
|
# Shuffle aligned_latent to BxCxS format
|
||||||
if is_latent(aligned_conditioning):
|
if is_latent(aligned_conditioning):
|
||||||
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
|
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
|
||||||
|
@ -184,14 +172,31 @@ class DiffusionTtsFlat(nn.Module):
|
||||||
unused_params.extend(list(self.latent_converter.parameters()))
|
unused_params.extend(list(self.latent_converter.parameters()))
|
||||||
cond_emb_spread = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1])
|
cond_emb_spread = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1])
|
||||||
code_emb = self.conditioning_conv(torch.cat([cond_emb_spread, code_emb], dim=1))
|
code_emb = self.conditioning_conv(torch.cat([cond_emb_spread, code_emb], dim=1))
|
||||||
|
|
||||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||||
if self.training and self.unconditioned_percentage > 0:
|
if self.training and self.unconditioned_percentage > 0:
|
||||||
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
|
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
|
||||||
device=code_emb.device) < self.unconditioned_percentage
|
device=code_emb.device) < self.unconditioned_percentage
|
||||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1),
|
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(conditioning_input.shape[0], 1, 1),
|
||||||
code_emb)
|
code_emb)
|
||||||
|
|
||||||
# Everything after this comment is timestep dependent.
|
if return_unused:
|
||||||
|
return code_emb, unused_params
|
||||||
|
return code_emb
|
||||||
|
|
||||||
|
def forward(self, x, timesteps, aligned_conditioning, conditioning_input, conditioning_free=False):
|
||||||
|
"""
|
||||||
|
Apply the model to an input batch.
|
||||||
|
|
||||||
|
:param x: an [N x C x ...] Tensor of inputs.
|
||||||
|
:param timesteps: a 1-D batch of timesteps.
|
||||||
|
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
|
||||||
|
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
|
||||||
|
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
|
||||||
|
:return: an [N x C x ...] Tensor of outputs.
|
||||||
|
"""
|
||||||
|
code_emb, unused_params = self.get_conditioning_encodings(aligned_conditioning, conditioning_input, conditioning_free, return_unused=True)
|
||||||
|
# Everything after this comment is timestep-dependent.
|
||||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||||
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb=time_emb)
|
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb=time_emb)
|
||||||
x = self.inp_block(x)
|
x = self.inp_block(x)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user