forked from mrq/DL-Art-School
Add use_generator_as_filter
This commit is contained in:
parent
617d97e19d
commit
96f1be30ed
81
codes/scripts/use_generator_as_filter.py
Normal file
81
codes/scripts/use_generator_as_filter.py
Normal file
|
@ -0,0 +1,81 @@
|
||||||
|
import os.path as osp
|
||||||
|
import logging
|
||||||
|
import time
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
import os
|
||||||
|
|
||||||
|
import utils
|
||||||
|
from models.ExtensibleTrainer import ExtensibleTrainer
|
||||||
|
from models.networks import define_F
|
||||||
|
from models.steps.losses import FeatureLoss
|
||||||
|
from utils import options as option
|
||||||
|
import utils.util as util
|
||||||
|
from data import create_dataset, create_dataloader
|
||||||
|
from tqdm import tqdm
|
||||||
|
import torch
|
||||||
|
import torchvision
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
bin_path = "f:\\binned"
|
||||||
|
good_path = "f:\\good"
|
||||||
|
os.makedirs(bin_path, exist_ok=True)
|
||||||
|
os.makedirs(good_path, exist_ok=True)
|
||||||
|
|
||||||
|
|
||||||
|
torch.backends.cudnn.benchmark = True
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/generator_filter.yml')
|
||||||
|
opt = option.parse(parser.parse_args().opt, is_train=False)
|
||||||
|
opt = option.dict_to_nonedict(opt)
|
||||||
|
opt['dist'] = False
|
||||||
|
|
||||||
|
util.mkdirs(
|
||||||
|
(path for key, path in opt['path'].items()
|
||||||
|
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
|
||||||
|
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
|
||||||
|
screen=True, tofile=True)
|
||||||
|
logger = logging.getLogger('base')
|
||||||
|
logger.info(option.dict2str(opt))
|
||||||
|
|
||||||
|
#### Create test dataset and dataloader
|
||||||
|
test_loaders = []
|
||||||
|
for phase, dataset_opt in sorted(opt['datasets'].items()):
|
||||||
|
test_set = create_dataset(dataset_opt)
|
||||||
|
test_loader = create_dataloader(test_set, dataset_opt, opt=opt)
|
||||||
|
logger.info('Number of test images in [{:s}]: {:d}'.format(dataset_opt['name'], len(test_set)))
|
||||||
|
test_loaders.append(test_loader)
|
||||||
|
|
||||||
|
model = ExtensibleTrainer(opt)
|
||||||
|
utils.util.loaded_options = opt
|
||||||
|
fea_loss = 0
|
||||||
|
for test_loader in test_loaders:
|
||||||
|
test_set_name = test_loader.dataset.opt['name']
|
||||||
|
logger.info('\nTesting [{:s}]...'.format(test_set_name))
|
||||||
|
test_start_time = time.time()
|
||||||
|
dataset_dir = osp.join(opt['path']['results_root'], test_set_name)
|
||||||
|
util.mkdir(dataset_dir)
|
||||||
|
netF = define_F(which_model='vgg').to(model.env['device'])
|
||||||
|
|
||||||
|
tq = tqdm(test_loader)
|
||||||
|
removed = 0
|
||||||
|
means = []
|
||||||
|
for data in tq:
|
||||||
|
model.feed_data(data, need_GT=True)
|
||||||
|
model.test()
|
||||||
|
gen = model.eval_state['gen'][0].to(model.env['device'])
|
||||||
|
feagen = netF(gen)
|
||||||
|
feareal = netF(data['GT'].to(model.env['device']))
|
||||||
|
losses = torch.sum(torch.abs(feareal - feagen), dim=(1,2,3))
|
||||||
|
means.append(torch.mean(losses).item())
|
||||||
|
#print(sum(means)/len(means), torch.mean(losses), torch.max(losses), torch.min(losses))
|
||||||
|
for i in range(losses.shape[0]):
|
||||||
|
if losses[i] < 25000:
|
||||||
|
os.remove(data['GT_path'][i])
|
||||||
|
removed += 1
|
||||||
|
#imname = osp.basename(data['GT_path'][i])
|
||||||
|
#if losses[i] < 25000:
|
||||||
|
# torchvision.utils.save_image(data['GT'][i], osp.join(bin_path, imname))
|
||||||
|
|
||||||
|
print("Removed %i/%i images" % (removed, len(test_set)))
|
Loading…
Reference in New Issue
Block a user