diff --git a/codes/models/audio/music/transformer_diffusion8.py b/codes/models/audio/music/transformer_diffusion8.py index 9ffd8440..a3c22551 100644 --- a/codes/models/audio/music/transformer_diffusion8.py +++ b/codes/models/audio/music/transformer_diffusion8.py @@ -224,8 +224,8 @@ class TransformerDiffusionWithQuantizer(nn.Module): def get_grad_norm_parameter_groups(self): groups = { - 'attention_layers': [lyr.attn for lyr in self.diff.layers], - 'ff_layers': [lyr.ff for lyr in self.diff.layers], + 'attention_layers': [lyr.attn.parameters() for lyr in self.diff.layers], + 'ff_layers': [lyr.ff.parameters() for lyr in self.diff.layers], 'quantizer_encoder': list(self.quantizer.encoder.parameters()), 'quant_codebook': [self.quantizer.quantizer.codevectors], 'rotary_embeddings': list(self.diff.rotary_embeddings.parameters()), @@ -268,9 +268,9 @@ if __name__ == '__main__': model = TransformerDiffusionWithQuantizer(model_channels=2048, block_channels=1024, prenet_channels=1024, input_vec_dim=1024, num_layers=16, prenet_layers=6) model.get_grad_norm_parameter_groups() - #quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant\\models\\18000_generator_ema.pth') + quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant_r4\\models\\5000_generator.pth') #diff_weights = torch.load('X:\\dlas\\experiments\\train_music_diffusion_tfd5\\models\\48000_generator_ema.pth') - #model.quantizer.load_state_dict(quant_weights, strict=False) + model.quantizer.load_state_dict(quant_weights, strict=False) #model.diff.load_state_dict(diff_weights) torch.save(model.state_dict(), 'sample.pth')