forked from mrq/DL-Art-School
.
This commit is contained in:
parent
ee2827dee9
commit
dca16e6447
|
@ -71,6 +71,7 @@ class TransformerDiffusion(nn.Module):
|
||||||
rotary_emb_dim=32,
|
rotary_emb_dim=32,
|
||||||
input_vec_dim=512,
|
input_vec_dim=512,
|
||||||
out_channels=512, # mean and variance
|
out_channels=512, # mean and variance
|
||||||
|
num_heads=16,
|
||||||
dropout=0,
|
dropout=0,
|
||||||
use_fp16=False,
|
use_fp16=False,
|
||||||
ar_prior=False,
|
ar_prior=False,
|
||||||
|
@ -94,7 +95,6 @@ class TransformerDiffusion(nn.Module):
|
||||||
nn.SiLU(),
|
nn.SiLU(),
|
||||||
linear(prenet_channels, model_channels),
|
linear(prenet_channels, model_channels),
|
||||||
)
|
)
|
||||||
prenet_heads = prenet_channels//64
|
|
||||||
|
|
||||||
self.ar_prior = ar_prior
|
self.ar_prior = ar_prior
|
||||||
if ar_prior:
|
if ar_prior:
|
||||||
|
@ -102,7 +102,7 @@ class TransformerDiffusion(nn.Module):
|
||||||
self.ar_prior_intg = Encoder(
|
self.ar_prior_intg = Encoder(
|
||||||
dim=prenet_channels,
|
dim=prenet_channels,
|
||||||
depth=prenet_layers,
|
depth=prenet_layers,
|
||||||
heads=prenet_heads,
|
heads=num_heads,
|
||||||
ff_dropout=dropout,
|
ff_dropout=dropout,
|
||||||
attn_dropout=dropout,
|
attn_dropout=dropout,
|
||||||
use_rmsnorm=True,
|
use_rmsnorm=True,
|
||||||
|
@ -116,7 +116,7 @@ class TransformerDiffusion(nn.Module):
|
||||||
self.code_converter = Encoder(
|
self.code_converter = Encoder(
|
||||||
dim=prenet_channels,
|
dim=prenet_channels,
|
||||||
depth=prenet_layers,
|
depth=prenet_layers,
|
||||||
heads=prenet_heads,
|
heads=num_heads,
|
||||||
ff_dropout=dropout,
|
ff_dropout=dropout,
|
||||||
attn_dropout=dropout,
|
attn_dropout=dropout,
|
||||||
use_rmsnorm=True,
|
use_rmsnorm=True,
|
||||||
|
@ -129,7 +129,7 @@ class TransformerDiffusion(nn.Module):
|
||||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,prenet_channels))
|
self.unconditioned_embedding = nn.Parameter(torch.randn(1,1,prenet_channels))
|
||||||
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
|
self.rotary_embeddings = RotaryEmbedding(rotary_emb_dim)
|
||||||
self.intg = nn.Linear(prenet_channels*2, model_channels)
|
self.intg = nn.Linear(prenet_channels*2, model_channels)
|
||||||
self.layers = TimestepRotaryEmbedSequential(*[DietAttentionBlock(model_channels, block_channels, block_channels // 64, dropout) for _ in range(num_layers)])
|
self.layers = TimestepRotaryEmbedSequential(*[DietAttentionBlock(model_channels, block_channels, num_heads, dropout) for _ in range(num_layers)])
|
||||||
|
|
||||||
self.out = nn.Sequential(
|
self.out = nn.Sequential(
|
||||||
normalization(model_channels),
|
normalization(model_channels),
|
||||||
|
@ -196,18 +196,16 @@ class TransformerDiffusion(nn.Module):
|
||||||
|
|
||||||
|
|
||||||
class TransformerDiffusionWithQuantizer(nn.Module):
|
class TransformerDiffusionWithQuantizer(nn.Module):
|
||||||
def __init__(self, freeze_quantizer_until=20000, quantizer_dims=[1024], no_reconstruction=True, **kwargs):
|
def __init__(self, quantizer_dims=[1024], freeze_quantizer_until=20000, **kwargs):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.internal_step = 0
|
self.internal_step = 0
|
||||||
self.freeze_quantizer_until = freeze_quantizer_until
|
self.freeze_quantizer_until = freeze_quantizer_until
|
||||||
self.diff = TransformerDiffusion(**kwargs)
|
self.diff = TransformerDiffusion(**kwargs)
|
||||||
self.quantizer = MusicQuantizer2(inp_channels=kwargs['in_channels'], inner_dim=quantizer_dims,
|
self.quantizer = MusicQuantizer2(inp_channels=kwargs['in_channels'], inner_dim=quantizer_dims,
|
||||||
codevector_dim=quantizer_dims[0], checkpoint=False,
|
codevector_dim=quantizer_dims[0], codebook_size=256,
|
||||||
codebook_size=256, codebook_groups=2,
|
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
|
||||||
max_gumbel_temperature=4, min_gumbel_temperature=.5)
|
|
||||||
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
|
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
|
||||||
if no_reconstruction:
|
|
||||||
del self.quantizer.up
|
del self.quantizer.up
|
||||||
|
|
||||||
def update_for_step(self, step, *args):
|
def update_for_step(self, step, *args):
|
||||||
|
@ -219,30 +217,27 @@ class TransformerDiffusionWithQuantizer(nn.Module):
|
||||||
)
|
)
|
||||||
|
|
||||||
def forward(self, x, timesteps, truth_mel, conditioning_input=None, disable_diversity=False, conditioning_free=False):
|
def forward(self, x, timesteps, truth_mel, conditioning_input=None, disable_diversity=False, conditioning_free=False):
|
||||||
mse, diversity_loss, proj = self.quantizer(truth_mel, return_decoder_latent=True)
|
quant_grad_enabled = self.internal_step > self.freeze_quantizer_until
|
||||||
|
with torch.set_grad_enabled(quant_grad_enabled):
|
||||||
|
proj, diversity_loss = self.quantizer(truth_mel, return_decoder_latent=True)
|
||||||
proj = proj.permute(0,2,1)
|
proj = proj.permute(0,2,1)
|
||||||
|
|
||||||
quant_grad_enabled = self.internal_step > self.freeze_quantizer_until
|
|
||||||
if not quant_grad_enabled:
|
|
||||||
proj = proj.detach()
|
|
||||||
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
|
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
|
||||||
|
if not quant_grad_enabled:
|
||||||
unused = 0
|
unused = 0
|
||||||
for p in self.quantizer.parameters():
|
for p in self.quantizer.parameters():
|
||||||
unused = unused + p.mean() * 0
|
unused = unused + p.mean() * 0
|
||||||
proj = proj + unused
|
proj = proj + unused
|
||||||
|
diversity_loss = diversity_loss * 0
|
||||||
|
|
||||||
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input,
|
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
|
||||||
conditioning_free=conditioning_free)
|
|
||||||
|
|
||||||
if disable_diversity:
|
if disable_diversity:
|
||||||
return diff
|
return diff
|
||||||
if mse is None:
|
|
||||||
return diff, diversity_loss
|
return diff, diversity_loss
|
||||||
return diff, diversity_loss, mse
|
|
||||||
|
|
||||||
def get_debug_values(self, step, __):
|
def get_debug_values(self, step, __):
|
||||||
if self.quantizer.total_codes > 0:
|
if self.quantizer.total_codes > 0:
|
||||||
return {'histogram_quant_codes': self.quantizer.codes[:self.quantizer.total_codes],
|
return {'histogram_codes': self.quantizer.codes[:self.quantizer.total_codes],
|
||||||
'gumbel_temperature': self.quantizer.quantizer.temperature}
|
'gumbel_temperature': self.quantizer.quantizer.temperature}
|
||||||
else:
|
else:
|
||||||
return {}
|
return {}
|
||||||
|
@ -320,26 +315,24 @@ def register_transformer_diffusion8_with_ar_prior(opt_net, opt):
|
||||||
|
|
||||||
|
|
||||||
def test_quant_model():
|
def test_quant_model():
|
||||||
clip = torch.randn(2, 100, 401)
|
clip = torch.randn(2, 256, 400)
|
||||||
|
cond = torch.randn(2, 256, 400)
|
||||||
ts = torch.LongTensor([600, 600])
|
ts = torch.LongTensor([600, 600])
|
||||||
model = TransformerDiffusionWithQuantizer(in_channels=100, out_channels=200, quantizer_dims=[1024,768,512,384],
|
model = TransformerDiffusionWithQuantizer(in_channels=256, model_channels=2048, block_channels=1024,
|
||||||
model_channels=2048, block_channels=1024, prenet_channels=1024,
|
prenet_channels=1024, num_heads=8,
|
||||||
input_vec_dim=1024, num_layers=16, prenet_layers=6,
|
input_vec_dim=1024, num_layers=16, prenet_layers=6)
|
||||||
no_reconstruction=False)
|
model.get_grad_norm_parameter_groups()
|
||||||
#model.get_grad_norm_parameter_groups()
|
|
||||||
|
|
||||||
#quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant_r4\\models\\5000_generator.pth')
|
quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant_r4\\models\\5000_generator.pth')
|
||||||
#diff_weights = torch.load('X:\\dlas\\experiments\\train_music_diffusion_tfd5\\models\\48000_generator_ema.pth')
|
model.quantizer.load_state_dict(quant_weights, strict=False)
|
||||||
#model.quantizer.load_state_dict(quant_weights, strict=False)
|
|
||||||
#model.diff.load_state_dict(diff_weights)
|
|
||||||
|
|
||||||
#torch.save(model.state_dict(), 'sample.pth')
|
torch.save(model.state_dict(), 'sample.pth')
|
||||||
print_network(model)
|
print_network(model)
|
||||||
o = model(clip, ts, clip)
|
o = model(clip, ts, clip, cond)
|
||||||
|
|
||||||
|
|
||||||
def test_ar_model():
|
def test_ar_model():
|
||||||
clip = torch.randn(2, 256, 401)
|
clip = torch.randn(2, 256, 400)
|
||||||
cond = torch.randn(2, 256, 400)
|
cond = torch.randn(2, 256, 400)
|
||||||
ts = torch.LongTensor([600, 600])
|
ts = torch.LongTensor([600, 600])
|
||||||
model = TransformerDiffusionWithARPrior(model_channels=2048, block_channels=1024, prenet_channels=1024,
|
model = TransformerDiffusionWithARPrior(model_channels=2048, block_channels=1024, prenet_channels=1024,
|
||||||
|
|
Loading…
Reference in New Issue
Block a user