import argparse import logging import os.path as osp import random import numpy as np import torch import torchvision from scipy.io import wavfile from tqdm import tqdm import dlas.utils.options as option import dlas.utils.util as util from dlas.data import create_dataloader, create_dataset from dlas.models.audio.vocoders.waveglow import Denoiser from dlas.trainer.ExtensibleTrainer import ExtensibleTrainer def forward_pass(model, denoiser, data, output_dir, opt, b): with torch.no_grad(): model.feed_data(data, 0) model.test() pred_waveforms = model.eval_state[opt['eval']['output_state']][0] pred_waveforms = denoiser(pred_waveforms) gt = 'ground_truth' in opt['eval'].keys() if gt: ground_truth_waveforms = model.eval_state[opt['eval'] ['ground_truth']][0] ground_truth_waveforms = denoiser(ground_truth_waveforms) for i in range(pred_waveforms.shape[0]): # Output predicted mels and waveforms. pred_mel = model.eval_state[opt['eval']['pred_mel']][0][i].unsqueeze(0) pred_mel = ((pred_mel - pred_mel.mean()) / max(abs(pred_mel.min()), pred_mel.max())).unsqueeze(1) torchvision.utils.save_image(pred_mel, osp.join( output_dir, f'{b}_{i}_pred_mel.png')) audio = pred_waveforms[i][0].cpu().numpy() wavfile.write(osp.join(output_dir, f'{b}_{i}.wav'), 22050, audio) if gt: gt_mel = model.eval_state[opt['eval'] ['ground_truth_mel']][0][i].unsqueeze(0) gt_mel = ((gt_mel - gt_mel.mean()) / max(abs(gt_mel.min()), gt_mel.max())).unsqueeze(1) torchvision.utils.save_image( gt_mel, osp.join(output_dir, f'{b}_{i}_gt_mel.png')) audio = ground_truth_waveforms[i][0].cpu().numpy() wavfile.write( osp.join(output_dir, f'{b}_{i}_ground_truth.wav'), 22050, audio) if __name__ == "__main__": # Set seeds torch.manual_seed(5555) random.seed(5555) np.random.seed(5555) # options torch.backends.cudnn.benchmark = True want_metrics = False parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_lrdvae_audio_clips.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) utils.util.loaded_options = opt util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): test_set, collate_fn = create_dataset(dataset_opt, return_collate=True) test_loader = create_dataloader( test_set, dataset_opt, collate_fn=collate_fn) logger.info('Number of test texts in [{:s}]: {:d}'.format( dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) model = ExtensibleTrainer(opt) # Pretty hacky, need to figure out a better way to integrate this. denoiser = Denoiser(model.networks['waveglow'].module) batch = 0 for test_loader in test_loaders: dataset_dir = opt['path']['results_root'] util.mkdir(dataset_dir) tq = tqdm(test_loader) for data in tq: forward_pass(model, denoiser, data, dataset_dir, opt, batch) batch += 1