import argparse import logging import os.path as osp import random import numpy as np import torch from scipy.io import wavfile from tqdm import tqdm import dlas.utils.options as option import dlas.utils.util as util from dlas.data import create_dataloader, create_dataset from dlas.models.audio.tts.tacotron2 import sequence_to_text from dlas.trainer.ExtensibleTrainer import ExtensibleTrainer def forward_pass(model, data, output_dir, opt, b): with torch.no_grad(): model.feed_data(data, 0) model.test() if 'real_text' in opt['eval'].keys(): real = data[opt['eval']['real_text']][0] print(f'{b} Real text: "{real}"') pred_seq = model.eval_state[opt['eval']['gen_text']][0] pred_text = [sequence_to_text(ts) for ts in pred_seq] audio = model.eval_state[opt['eval']['audio']][0].cpu().numpy() wavfile.write(osp.join(output_dir, f'{b}_clip.wav'), 22050, audio) for i, text in enumerate(pred_text): print(f'{b} Predicted text {i}: "{text}"') if __name__ == "__main__": # Set seeds torch.manual_seed(5555) random.seed(5555) np.random.seed(5555) # options torch.backends.cudnn.benchmark = True want_metrics = False parser = argparse.ArgumentParser() parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../options/test_gpt_asr_mass.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) utils.util.loaded_options = opt util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) test_loaders = [] for phase, dataset_opt in sorted(opt['datasets'].items()): test_set, collate_fn = create_dataset(dataset_opt, return_collate=True) test_loader = create_dataloader( test_set, dataset_opt, collate_fn=collate_fn) logger.info('Number of test texts in [{:s}]: {:d}'.format( dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) model = ExtensibleTrainer(opt) batch = 0 for test_loader in test_loaders: dataset_dir = opt['path']['results_root'] util.mkdir(dataset_dir) tq = tqdm(test_loader) for data in tq: forward_pass(model, data, dataset_dir, opt, batch) batch += 1