forked from mrq/bitsandbytes-rocm
Fixed direct extraction masking.
This commit is contained in:
parent
a409213656
commit
389f66ca5a
|
@ -191,6 +191,7 @@ class MatMul8bitLt(torch.autograd.Function):
|
|||
# B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
|
||||
# we also need to convert it to the turing/ampere format
|
||||
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
|
||||
#state.B = (state.CB.float()*(state.SCB.view(-1, 1)/127)).half()
|
||||
#if state.threshold > 0.0 and coo_tensorA is not None and state.idx is None and state.CB is not None:
|
||||
# # generate outlier index and subB
|
||||
# outlier_idx = torch.unique(coo_tensorA.colidx).long()
|
||||
|
@ -214,7 +215,6 @@ class MatMul8bitLt(torch.autograd.Function):
|
|||
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
|
||||
subA = None
|
||||
|
||||
C32A, SA = F.transform(CA, 'col32')
|
||||
|
||||
# 2. Quantize B
|
||||
if state.has_fp16_weights:
|
||||
|
@ -233,14 +233,15 @@ class MatMul8bitLt(torch.autograd.Function):
|
|||
# extract outliers
|
||||
|
||||
outlier_idx = torch.unique(coo_tensorA.colidx)
|
||||
state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
|
||||
if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
|
||||
# do not use pool for 2nd FFN layer
|
||||
state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
|
||||
else:
|
||||
state.idx = outlier_idx
|
||||
outliers = F.extract_outliers(state.CxB, state.SB, outlier_idx).half()
|
||||
state.subB = (outliers*state.SCB.view(-1, 1).half()/127.0).t().contiguous()
|
||||
state.idx = outlier_idx
|
||||
#state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
|
||||
#if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
|
||||
# # do not use pool for 2nd FFN layer
|
||||
# state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
|
||||
#else:
|
||||
# state.idx = outlier_idx
|
||||
outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
|
||||
state.subB = (outliers*state.SCB.view(-1, 1)/127.0).t().contiguous().half()
|
||||
CA[:, state.idx.long()] = 0
|
||||
CAt[:, state.idx.long()] = 0
|
||||
subA = A[:, state.idx.long()]
|
||||
|
@ -253,11 +254,12 @@ class MatMul8bitLt(torch.autograd.Function):
|
|||
output_shape = (input_shape[0], shapeB[0])
|
||||
|
||||
# 3. Matmul
|
||||
C32A, SA = F.transform(CA, 'col32')
|
||||
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
|
||||
output = F.mm_dequant(out32, Sout32, SCA, state.SCB)
|
||||
|
||||
# 4. Mixed-precision decomposition matmul
|
||||
if state.threshold > 0.0 and coo_tensorA is not None and subA is not None:
|
||||
if coo_tensorA is not None and subA is not None:
|
||||
output += torch.matmul(subA, state.subB)
|
||||
|
||||
# 5. Save state
|
||||
|
|
Loading…
Reference in New Issue
Block a user