Merge branch 'main' of github.com:facebookresearch/bitsandbytes into 0.26.0

This commit is contained in:
Tim Dettmers 2021-11-29 08:24:17 -08:00
commit 3cff6795fb
2 changed files with 10 additions and 5 deletions

View File

@ -15,8 +15,8 @@ from bitsandbytes.optim import GlobalOptimManager
class StableEmbedding(torch.nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
sparse: bool = True, _weight: Optional[Tensor] = None) -> None:
super(StableEmbedding, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, False, _weight)
sparse: bool = False, _weight: Optional[Tensor] = None) -> None:
super(StableEmbedding, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight)
self.norm = torch.nn.LayerNorm(embedding_dim)
GlobalOptimManager.get_instance().register_parameters(self.weight)
GlobalOptimManager.get_instance().override_config(self.weight, 'optim_bits', 32)

View File

@ -2,7 +2,12 @@
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import os
import torch
import torch.distributed as dist
from bitsandbytes.optim.optimizer import Optimizer2State
import bitsandbytes.functional as F
@ -219,9 +224,9 @@ class AnalysisAdam(torch.optim.Optimizer):
if self.savedir != '' and state['step'] % 100 == 0:
if not os.path.exists(self.savedir): os.makedirs(self.savedir)
shapestr = '_'.join([str(dim) for dim in p_data_fp32.shape])
pathe = join(self.savedir, f'{p_id}_{shapestr}_abserr.pkl')
pathrele = join(self.savedir, f'{p_id}_{shapestr}_relerr.pkl')
pathcounts = join(self.savedir, f'{p_id}_{shapestr}_counts.pkl')
pathe = os.path.join(self.savedir, f'{p_id}_{shapestr}_abserr.pkl')
pathrele = os.path.join(self.savedir, f'{p_id}_{shapestr}_relerr.pkl')
pathcounts = os.path.join(self.savedir, f'{p_id}_{shapestr}_counts.pkl')
torch.save(e, pathe)
torch.save(rele, pathrele)
torch.save(counts, pathcounts)