forked from mrq/bitsandbytes-rocm
add memory effcient backward option
This commit is contained in:
parent
843ad0631c
commit
42b5fc9acc
|
@ -1,5 +1,6 @@
|
|||
import operator
|
||||
import torch
|
||||
import bitsandbytes as bnb
|
||||
import bitsandbytes.functional as F
|
||||
|
||||
from dataclasses import dataclass
|
||||
|
@ -187,6 +188,8 @@ class MatmulLtState:
|
|||
use_pool = False
|
||||
formatB = F.get_special_format_str()
|
||||
|
||||
memory_efficient_backward = False
|
||||
|
||||
def reset_grads(self):
|
||||
self.CB = None
|
||||
self.CxB = None
|
||||
|
@ -283,6 +286,12 @@ class MatMul8bitLt(torch.autograd.Function):
|
|||
|
||||
outlier_idx = torch.unique(coo_tensorA.colidx)
|
||||
state.idx = outlier_idx
|
||||
# state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
|
||||
# if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
|
||||
# # do not use pool for 2nd FFN layer
|
||||
# state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
|
||||
# else:
|
||||
# state.idx = outlier_idx
|
||||
outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
|
||||
state.subB = (
|
||||
(outliers * state.SCB.view(-1, 1) / 127.0)
|
||||
|
@ -332,13 +341,15 @@ class MatMul8bitLt(torch.autograd.Function):
|
|||
clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
|
||||
return clone_func(output.view(output_shape))
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
if ctx.is_empty:
|
||||
bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias))
|
||||
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
|
||||
|
||||
req_gradA, req_gradB, req_gradBias = ctx.req_grads
|
||||
assert not req_gradB, "TODO: support weight updates as well"
|
||||
CAt, subA = ctx.tensors
|
||||
SCAt, idx = ctx.tensor_states
|
||||
formatB = ctx.formatB
|
||||
state = ctx.state
|
||||
|
||||
# Cast grad_output to fp16
|
||||
|
@ -352,11 +363,31 @@ class MatMul8bitLt(torch.autograd.Function):
|
|||
|
||||
grad_A = grad_B = grad_bias = None
|
||||
|
||||
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output)
|
||||
if req_gradB:
|
||||
CxAt, SAt = F.transform(CAt, formatB, transpose=True)
|
||||
C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True)
|
||||
gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt)
|
||||
grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt)
|
||||
if state.threshold > 0.0 and subA is not None:
|
||||
grad_B[:, idx] += torch.matmul(grad_output.t(), subA)
|
||||
|
||||
if req_gradA:
|
||||
CB = state.CB.half()
|
||||
SCB = (state.SCB.unsqueeze(1) / 127.0).half()
|
||||
CB *= SCB
|
||||
grad_A = torch.mm(grad_output, CB).view(ctx.grad_shape)
|
||||
if state.CBt:
|
||||
C32grad, Sgrad = F.transform(Cgrad, "col32")
|
||||
if state.CxBt is None:
|
||||
state.CxBt, state.SBt = F.transform(
|
||||
state.CBt, to_order=formatB, transpose=True
|
||||
)
|
||||
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
|
||||
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape)
|
||||
elif state.CB:
|
||||
CB = state.CB.half()
|
||||
SCB = (state.SCB.unsqueeze(1) / 127.0).half()
|
||||
CB *= SCB
|
||||
grad_A = torch.mm(grad_output, CB).view(ctx.grad_shape)
|
||||
else:
|
||||
raise Exception('State must contain either CBt or CB matrix')
|
||||
|
||||
if req_gradBias:
|
||||
grad_bias = grad_output.sum(0)
|
||||
|
@ -367,6 +398,9 @@ class MatMul8bitLt(torch.autograd.Function):
|
|||
return grad_A, grad_B, None, grad_bias, None
|
||||
|
||||
|
||||
matmul = MatMul8bitLt.apply
|
||||
|
||||
|
||||
def matmul(
|
||||
A: tensor,
|
||||
B: tensor,
|
||||
|
|
|
@ -223,6 +223,7 @@ class Linear8bitLt(nn.Linear):
|
|||
has_fp16_weights=True,
|
||||
threshold=0.0,
|
||||
index=None,
|
||||
memory_efficient_backward=False
|
||||
):
|
||||
super(Linear8bitLt, self).__init__(
|
||||
input_features, output_features, bias
|
||||
|
@ -232,6 +233,7 @@ class Linear8bitLt(nn.Linear):
|
|||
|
||||
self.state.threshold = threshold
|
||||
self.state.has_fp16_weights = has_fp16_weights
|
||||
self.state.memory_efficient_backward = memory_efficient_backward
|
||||
if threshold > 0.0 and not has_fp16_weights:
|
||||
self.state.use_pool = True
|
||||
|
||||
|
@ -255,10 +257,16 @@ class Linear8bitLt(nn.Linear):
|
|||
|
||||
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
|
||||
|
||||
if not self.state.has_fp16_weights and self.state.CxB is not None:
|
||||
# In this version, we convert 8-bit row major to turing/ampere format at each inference pass
|
||||
# Thus, we delete CxB from the state. TODO: do not store it in the state in the first place.
|
||||
del self.state.CxB
|
||||
if not self.state.has_fp16_weights:
|
||||
if not self.state.memory_efficient_backward and self.state.CB is not None:
|
||||
# we converted 8-bit row major to turing/ampere format in the first inference pass
|
||||
# we no longer need the row-major weight
|
||||
del self.state.CB
|
||||
self.weight.data = self.state.CxB
|
||||
elif self.state.memory_efficient_backward and self.state.CxB is not None:
|
||||
# For memory efficient backward, we convert 8-bit row major to turing/ampere format at each inference pass.
|
||||
# Thus, we delete CxB from the state.
|
||||
del self.state.CxB
|
||||
|
||||
return out
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user