Merge pull request #33 from dbaranchuk/memory-efficient-backward

Memory efficient backward
This commit is contained in:
Tim Dettmers 2022-09-19 21:09:25 -07:00 committed by GitHub
commit 439f2b0c10
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 100 additions and 52 deletions

View File

@ -1,4 +1,6 @@
import operator
import warnings
import torch
import bitsandbytes.functional as F
@ -184,6 +186,7 @@ class MatmulLtState:
idx = None
is_training = True
has_fp16_weights = True
memory_efficient_backward = False
use_pool = False
formatB = F.get_special_format_str()
@ -209,31 +212,29 @@ class MatMul8bitLt(torch.autograd.Function):
ctx.B = B
ctx.bias = bias
if A.shape[-1] == B.shape[0]:
return torch.empty(A.shape[:-1]+B.shape[1:], dtype=torch.float16, device=A.device)
return torch.empty(A.shape[:-1]+B.shape[1:], dtype=A.dtype, device=A.device)
else:
return torch.empty(A.shape[:-1]+B.shape[:1], dtype=torch.float16, device=A.device)
return torch.empty(A.shape[:-1]+B.shape[:1], dtype=A.dtype, device=A.device)
# 1. Quantize A
# 2. Quantize B
# 3. Matmul
# 4. Mixed-precision decomposition matmul
# 5. Save state
requires_gradA = A.requires_grad
requires_gradB = B.requires_grad
requires_gradBias = bias is not None and bias.requires_grad
formatB = state.formatB
input_shape = A.shape
if state.outlier_pool is None:
state.outlier_pool = GlobalOutlierPooler.get_instance()
assert (
A.dtype == torch.float16
), f"The input data type needs to be fp16 but {A.dtype} was found!"
# Cast A to fp16
if A.dtype != torch.float16:
warnings.warn(f"MatMul8bitLt: inputs will be cast from {A.dtype} to float16 during quantization")
# 1. Quantize A
if len(A.shape) == 3:
A = A.view(-1, A.shape[-1]).contiguous()
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(
A, threshold=state.threshold
A.to(torch.float16), threshold=state.threshold
)
if state.threshold > 0.0 and coo_tensorA is not None:
@ -269,7 +270,7 @@ class MatMul8bitLt(torch.autograd.Function):
state.SCB,
state.SCBt,
coo_tensorB,
) = F.double_quant(B)
) = F.double_quant(B.to(torch.float16))
state.CxB, state.SB = F.transform(CB, to_order=formatB)
else:
has_grad = False
@ -290,7 +291,7 @@ class MatMul8bitLt(torch.autograd.Function):
(outliers * state.SCB.view(-1, 1) / 127.0)
.t()
.contiguous()
.half()
.to(A.dtype)
)
CA[:, state.idx.long()] = 0
CAt[:, state.idx.long()] = 0
@ -307,7 +308,13 @@ class MatMul8bitLt(torch.autograd.Function):
C32A, SA = F.transform(CA, "col32")
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
# we apply the fused bias here
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
if bias is None or bias.dtype == torch.float16:
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=bias)
output = output.to(A.dtype)
else: # apply bias separately
output = F.mm_dequant(out32, Sout32, SCA, state.SCB, bias=None)
output = output.to(A.dtype).add_(bias)
# 4. Mixed-precision decomposition matmul
if coo_tensorA is not None and subA is not None:
@ -318,9 +325,9 @@ class MatMul8bitLt(torch.autograd.Function):
ctx.formatB = formatB
ctx.grad_shape = input_shape
ctx.req_grads = [requires_gradA, requires_gradB, requires_gradBias]
ctx.dtype_A, ctx.dtype_B, ctx.dtype_bias = A.dtype, B.dtype, None if bias is None else bias.dtype
if requires_gradA or requires_gradB:
if any(ctx.needs_input_grad[:2]):
ctx.tensors = (CAt, subA)
ctx.tensor_states = (SCAt, state.idx)
else:
@ -328,8 +335,8 @@ class MatMul8bitLt(torch.autograd.Function):
ctx.tensor_states = (None, None)
ctx.save_for_backward(None, None)
clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
#clone_func = torch.clone
return clone_func(output.view(output_shape))
@staticmethod
@ -337,23 +344,24 @@ class MatMul8bitLt(torch.autograd.Function):
if ctx.is_empty:
bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias))
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
req_gradA, req_gradB, req_gradBias = ctx.req_grads
req_gradA, req_gradB, _, req_gradBias, _ = ctx.needs_input_grad
CAt, subA = ctx.tensors
SCAt, idx = ctx.tensor_states
formatB = ctx.formatB
state = ctx.state
assert (
state.has_fp16_weights
), "Backprop only supported for fp16 weights."
grad_A = grad_B = grad_bias = None
if req_gradBias:
# compute grad_bias first before changing grad_output dtype
grad_bias = grad_output.sum(0, dtype=ctx.dtype_bias)
# Cast grad_output to fp16
if len(grad_output.shape) == 3:
grad_output = grad_output.view(
grad_output = grad_output.reshape(
-1, grad_output.shape[-1]
).contiguous()
grad_A = grad_B = grad_bias = None
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output)
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output.to(torch.float16))
if req_gradB:
CxAt, SAt = F.transform(CAt, formatB, transpose=True)
C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True)
@ -363,16 +371,20 @@ class MatMul8bitLt(torch.autograd.Function):
grad_B[:, idx] += torch.matmul(grad_output.t(), subA)
if req_gradA:
C32grad, Sgrad = F.transform(Cgrad, "col32")
if state.CxBt is None:
state.CxBt, state.SBt = F.transform(
state.CBt, to_order=formatB, transpose=True
)
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape)
if state.CBt is not None:
C32grad, Sgrad = F.transform(Cgrad, "col32")
if state.CxBt is None:
state.CxBt, state.SBt = F.transform(
state.CBt, to_order=formatB, transpose=True
)
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape).to(ctx.dtype_A)
if req_gradBias:
grad_bias = grad_output.sum(0)
elif state.CB is not None:
CB = state.CB.to(ctx.dtype_A, copy=True).mul_(state.SCB.unsqueeze(1).mul(1. / 127.0))
grad_A = torch.matmul(grad_output, CB).view(ctx.grad_shape).to(ctx.dtype_A)
else:
raise Exception('State must contain either CBt or CB matrix for backward')
return grad_A, grad_B, None, grad_bias, None

View File

@ -221,6 +221,7 @@ class Linear8bitLt(nn.Linear):
output_features,
bias=True,
has_fp16_weights=True,
memory_efficient_backward=False,
threshold=0.0,
index=None,
):
@ -232,10 +233,13 @@ class Linear8bitLt(nn.Linear):
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
self.state.memory_efficient_backward = memory_efficient_backward
if threshold > 0.0 and not has_fp16_weights:
self.state.use_pool = True
self.weight = Int8Params(self.weight.data, has_fp16_weights=has_fp16_weights)
self.weight = Int8Params(
self.weight.data, has_fp16_weights=has_fp16_weights, requires_grad=has_fp16_weights
)
def init_8bit_state(self):
self.state.CB = self.weight.CB
@ -255,11 +259,16 @@ class Linear8bitLt(nn.Linear):
out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
if not self.state.has_fp16_weights and self.state.CB is not None:
# we converted 8-bit row major to turing/ampere format in the first inference pass
# we no longer need the row-major weight
del self.state.CB
self.weight.data = self.state.CxB
if not self.state.has_fp16_weights:
if not self.state.memory_efficient_backward and self.state.CB is not None:
# we converted 8-bit row major to turing/ampere format in the first inference pass
# we no longer need the row-major weight
del self.state.CB
self.weight.data = self.state.CxB
elif self.state.memory_efficient_backward and self.state.CxB is not None:
# For memory efficient backward, we convert 8-bit row major to turing/ampere format at each inference pass.
# Thus, we delete CxB from the state.
del self.state.CxB
return out

View File

@ -253,7 +253,7 @@ for c in req_grad:
transpose = [(False, True), (False, False)]
str_transpose = ["NT", "NN"]
dtype = [torch.float16]
dtype = [torch.float16, torch.bfloat16, torch.float32]
has_fp16_weights = [True, False]
has_bias = [True, False]
values = list(
@ -354,7 +354,7 @@ def test_matmullt(
state.SCB,
SCBt,
coo_tensorB,
) = bnb.functional.double_quant(B2)
) = bnb.functional.double_quant(B2.to(torch.float16))
B2 = state.CB
if not transpose[0] and transpose[1]:
@ -367,11 +367,14 @@ def test_matmullt(
if has_bias:
out_torch += bias
assert out_bnb.dtype == A.dtype, f"bnb matmullt received {A.dtype} but returned {out_bnb.dtype}"
n = out_bnb.numel()
err = torch.abs(out_bnb - out_torch).mean().item()
# print(f'abs error {err:.4f}')
idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
assert (idx == 0).sum().item() <= n * 0.0175
assert (idx == 0).sum().item() <= n * (0.0175 if dtype == torch.float16 else 0.021)
idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
assert (idx == 0).sum().item() <= n * 0.001

View File

@ -14,13 +14,15 @@ class MockArgs(object):
class MLP8bit(torch.nn.Module):
def __init__(self, dim1, dim2, has_fp16_weights=True, threshold=0.0):
def __init__(self, dim1, dim2, has_fp16_weights=True, memory_efficient_backward=False, threshold=0.0):
super(MLP8bit, self).__init__()
self.fc1 = bnb.nn.Linear8bitLt(
dim1, dim2, has_fp16_weights=has_fp16_weights, threshold=threshold
dim1, dim2, has_fp16_weights=has_fp16_weights, memory_efficient_backward=memory_efficient_backward,
threshold=threshold
)
self.fc2 = bnb.nn.Linear8bitLt(
dim2, dim1, has_fp16_weights=has_fp16_weights, threshold=threshold
dim2, dim1, has_fp16_weights=has_fp16_weights, memory_efficient_backward=memory_efficient_backward,
threshold=threshold
)
def forward(self, x):
@ -451,9 +453,12 @@ names = ["threshold_{0}".format(vals) for vals in values]
@pytest.mark.parametrize("threshold", values, ids=names)
def test_linear8bitlt_no_fp16_weights(threshold):
@pytest.mark.parametrize("memory_efficient_backward", [True, False])
def test_linear8bitlt_no_fp16_weights(threshold, memory_efficient_backward):
l1 = (
bnb.nn.Linear8bitLt(32, 64, threshold=threshold, has_fp16_weights=False)
bnb.nn.Linear8bitLt(
32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward
)
.cuda()
.half()
)
@ -513,7 +518,9 @@ def test_linear8bitlt_no_fp16_weights(threshold):
assert mlp.fc2.weight.dtype == torch.int8
mlp = (
MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False)
MLP8bit(
32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward
)
.half()
.to("cuda")
)
@ -531,11 +538,11 @@ def test_linear8bitlt_no_fp16_weights(threshold):
assert mlp.fc1.weight.device.type == "cuda"
assert mlp.fc2.weight.device.type == "cuda"
mlp = (
MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False)
.to(torch.float16)
.to("cuda")
)
mlp = MLP8bit(
32, 64, threshold=threshold, has_fp16_weights=False, memory_efficient_backward=memory_efficient_backward
)
w1, w2 = mlp.fc1.weight.clone().cuda(), mlp.fc2.weight.clone().cuda() # grab weights before quantization,
mlp = mlp.cuda().half() # and this line triggers quantization
for i in range(100):
b1 = torch.randn(16, 8, 32, device="cuda").half()
@ -545,11 +552,28 @@ def test_linear8bitlt_no_fp16_weights(threshold):
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
assert mlp.fc1.weight.dtype == torch.int8
assert mlp.fc2.weight.dtype == torch.int8
assert mlp.fc1.weight.device.type == "cuda"
assert mlp.fc2.weight.device.type == "cuda"
if memory_efficient_backward:
b1 = torch.randn(16, 8, 32, device="cuda", requires_grad=True, dtype=torch.half)
o1 = mlp(b1)
assert o1.dtype == torch.float16
assert o1.requires_grad
grad_proj = torch.randn_like(o1)
mlp.zero_grad()
(o1 * grad_proj).sum().backward()
grad_ref = grad_proj.flatten(2) @ w2.half() @ w1.half()
scale = grad_ref.abs().mean()
torch.testing.assert_allclose(b1.grad, grad_ref, rtol=0, atol=0.05 * scale)
idx = torch.isclose(b1.grad, grad_ref, atol=0.01 * scale, rtol=0.1)
assert (idx == 0).sum().item() <= b1.numel() * 0.005
def test_linear8bitlt_fp32_bias():
# casts model to fp16 -> int8 automatically