forked from mrq/bitsandbytes-rocm
factored cuda_setup.main out into smaller modules and functions
This commit is contained in:
parent
3809236428
commit
59a615b386
|
@ -22,3 +22,5 @@ __pdoc__ = {
|
||||||
"optim.optimizer.Optimizer8bit": False,
|
"optim.optimizer.Optimizer8bit": False,
|
||||||
"optim.optimizer.MockArgs": False,
|
"optim.optimizer.MockArgs": False,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
PACKAGE_GITHUB_URL = "https://github.com/TimDettmers/bitsandbytes"
|
||||||
|
|
|
@ -1,3 +1,96 @@
|
||||||
from bitsandbytes.debug_cli import cli
|
# from bitsandbytes.debug_cli import cli
|
||||||
|
|
||||||
cli()
|
# cli()
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
import torch
|
||||||
|
|
||||||
|
|
||||||
|
HEADER_WIDTH = 60
|
||||||
|
|
||||||
|
|
||||||
|
def print_header(
|
||||||
|
txt: str, width: int = HEADER_WIDTH, filler: str = "+"
|
||||||
|
) -> None:
|
||||||
|
txt = f" {txt} " if txt else ""
|
||||||
|
print(txt.center(width, filler))
|
||||||
|
|
||||||
|
|
||||||
|
def print_debug_info() -> None:
|
||||||
|
print(
|
||||||
|
"\nAbove we output some debug information. Please provide this info when "
|
||||||
|
f"creating an issue via {PACKAGE_GITHUB_URL}/issues/new/choose ...\n"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
print_header("")
|
||||||
|
print_header("DEBUG INFORMATION")
|
||||||
|
print_header("")
|
||||||
|
print()
|
||||||
|
|
||||||
|
|
||||||
|
from . import COMPILED_WITH_CUDA, PACKAGE_GITHUB_URL
|
||||||
|
from .cuda_setup.main import get_compute_capabilities
|
||||||
|
from .cuda_setup.env_vars import to_be_ignored
|
||||||
|
from .utils import print_stderr
|
||||||
|
|
||||||
|
|
||||||
|
print_header("POTENTIALLY LIBRARY-PATH-LIKE ENV VARS")
|
||||||
|
for k, v in os.environ.items():
|
||||||
|
if "/" in v and not to_be_ignored(k, v):
|
||||||
|
print(f"'{k}': '{v}'")
|
||||||
|
print_header("")
|
||||||
|
|
||||||
|
print(
|
||||||
|
"\nWARNING: Please be sure to sanitize sensible info from any such env vars!\n"
|
||||||
|
)
|
||||||
|
|
||||||
|
print_header("OTHER")
|
||||||
|
print(f"{COMPILED_WITH_CUDA = }")
|
||||||
|
print(f"COMPUTE_CAPABILITIES_PER_GPU = {get_compute_capabilities()}")
|
||||||
|
print_header("")
|
||||||
|
print_header("DEBUG INFO END")
|
||||||
|
print_header("")
|
||||||
|
print(
|
||||||
|
"""
|
||||||
|
Running a quick check that:
|
||||||
|
+ library is importable
|
||||||
|
+ CUDA function is callable
|
||||||
|
"""
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
from bitsandbytes.optim import Adam
|
||||||
|
|
||||||
|
p = torch.nn.Parameter(torch.rand(10, 10).cuda())
|
||||||
|
a = torch.rand(10, 10).cuda()
|
||||||
|
|
||||||
|
p1 = p.data.sum().item()
|
||||||
|
|
||||||
|
adam = Adam([p])
|
||||||
|
|
||||||
|
out = a * p
|
||||||
|
loss = out.sum()
|
||||||
|
loss.backward()
|
||||||
|
adam.step()
|
||||||
|
|
||||||
|
p2 = p.data.sum().item()
|
||||||
|
|
||||||
|
assert p1 != p2
|
||||||
|
print("SUCCESS!")
|
||||||
|
print("Installation was successful!")
|
||||||
|
sys.exit(0)
|
||||||
|
|
||||||
|
except ImportError:
|
||||||
|
print()
|
||||||
|
print_stderr(
|
||||||
|
f"WARNING: {__package__} is currently running as CPU-only!\n"
|
||||||
|
"Therefore, 8-bit optimizers and GPU quantization are unavailable.\n\n"
|
||||||
|
f"If you think that this is so erroneously,\nplease report an issue!"
|
||||||
|
)
|
||||||
|
print_debug_info()
|
||||||
|
sys.exit(0)
|
||||||
|
except Exception as e:
|
||||||
|
print(e)
|
||||||
|
print_debug_info()
|
||||||
|
sys.exit(1)
|
||||||
|
|
|
@ -1,8 +1,8 @@
|
||||||
import ctypes as ct
|
import ctypes as ct
|
||||||
import os
|
from pathlib import Path
|
||||||
from warnings import warn
|
from warnings import warn
|
||||||
|
|
||||||
from bitsandbytes.cuda_setup.main import evaluate_cuda_setup
|
from .cuda_setup.main import evaluate_cuda_setup
|
||||||
|
|
||||||
|
|
||||||
class CUDALibrary_Singleton(object):
|
class CUDALibrary_Singleton(object):
|
||||||
|
@ -12,18 +12,17 @@ class CUDALibrary_Singleton(object):
|
||||||
raise RuntimeError("Call get_instance() instead")
|
raise RuntimeError("Call get_instance() instead")
|
||||||
|
|
||||||
def initialize(self):
|
def initialize(self):
|
||||||
self.context = {}
|
|
||||||
binary_name = evaluate_cuda_setup()
|
binary_name = evaluate_cuda_setup()
|
||||||
if not os.path.exists(os.path.dirname(__file__) + f"/{binary_name}"):
|
package_dir = Path(__file__).parent
|
||||||
|
binary_path = package_dir / binary_name
|
||||||
|
|
||||||
|
if not binary_path.exists():
|
||||||
print(f"TODO: compile library for specific version: {binary_name}")
|
print(f"TODO: compile library for specific version: {binary_name}")
|
||||||
print("defaulting to libbitsandbytes.so")
|
legacy_binary_name = "libbitsandbytes.so"
|
||||||
self.lib = ct.cdll.LoadLibrary(
|
print(f"Defaulting to {legacy_binary_name}...")
|
||||||
os.path.dirname(__file__) + "/libbitsandbytes.so"
|
self.lib = ct.cdll.LoadLibrary(package_dir / legacy_binary_name)
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
self.lib = ct.cdll.LoadLibrary(
|
self.lib = ct.cdll.LoadLibrary(package_dir / binary_name)
|
||||||
os.path.dirname(__file__) + f"/{binary_name}"
|
|
||||||
)
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_instance(cls):
|
def get_instance(cls):
|
||||||
|
|
51
bitsandbytes/cuda_setup/env_vars.py
Normal file
51
bitsandbytes/cuda_setup/env_vars.py
Normal file
|
@ -0,0 +1,51 @@
|
||||||
|
import os
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
|
||||||
|
def to_be_ignored(env_var: str, value: str) -> bool:
|
||||||
|
ignorable = {
|
||||||
|
"PWD", # PWD: this is how the shell keeps track of the current working dir
|
||||||
|
"OLDPWD",
|
||||||
|
"SSH_AUTH_SOCK", # SSH stuff, therefore unrelated
|
||||||
|
"SSH_TTY",
|
||||||
|
"HOME", # Linux shell default
|
||||||
|
"TMUX", # Terminal Multiplexer
|
||||||
|
"XDG_DATA_DIRS", # XDG: Desktop environment stuff
|
||||||
|
"XDG_RUNTIME_DIR",
|
||||||
|
"MAIL", # something related to emails
|
||||||
|
"SHELL", # binary for currently invoked shell
|
||||||
|
"DBUS_SESSION_BUS_ADDRESS", # hardware related
|
||||||
|
"PATH", # this is for finding binaries, not libraries
|
||||||
|
"LESSOPEN", # related to the `less` command
|
||||||
|
"LESSCLOSE",
|
||||||
|
"_", # current Python interpreter
|
||||||
|
}
|
||||||
|
return env_var in ignorable
|
||||||
|
|
||||||
|
|
||||||
|
def might_contain_a_path(candidate: str) -> bool:
|
||||||
|
return "/" in candidate
|
||||||
|
|
||||||
|
|
||||||
|
def is_active_conda_env(env_var: str) -> bool:
|
||||||
|
return "CONDA_PREFIX" == env_var
|
||||||
|
|
||||||
|
|
||||||
|
def is_other_conda_env_var(env_var: str) -> bool:
|
||||||
|
return "CONDA" in env_var
|
||||||
|
|
||||||
|
|
||||||
|
def is_relevant_candidate_env_var(env_var: str, value: str) -> bool:
|
||||||
|
return is_active_conda_env(env_var) or (
|
||||||
|
might_contain_a_path(value) and not
|
||||||
|
is_other_conda_env_var(env_var) and not
|
||||||
|
to_be_ignored(env_var, value)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def get_potentially_lib_path_containing_env_vars() -> Dict[str, str]:
|
||||||
|
return {
|
||||||
|
env_var: value
|
||||||
|
for env_var, value in os.environ.items()
|
||||||
|
if is_relevant_candidate_env_var(env_var, value)
|
||||||
|
}
|
|
@ -8,8 +8,6 @@ extract factors the build is dependent on:
|
||||||
- CuBLAS-LT: full-build 8-bit optimizer
|
- CuBLAS-LT: full-build 8-bit optimizer
|
||||||
- no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`)
|
- no CuBLAS-LT: no 8-bit matrix multiplication (`nomatmul`)
|
||||||
|
|
||||||
alle Binaries packagen
|
|
||||||
|
|
||||||
evaluation:
|
evaluation:
|
||||||
- if paths faulty, return meaningful error
|
- if paths faulty, return meaningful error
|
||||||
- else:
|
- else:
|
||||||
|
@ -19,11 +17,10 @@ evaluation:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import ctypes
|
import ctypes
|
||||||
import os
|
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from typing import Set, Union
|
|
||||||
|
|
||||||
from ..utils import print_err, warn_of_missing_prerequisite, execute_and_return
|
from ..utils import execute_and_return
|
||||||
|
from .paths import determine_cuda_runtime_lib_path
|
||||||
|
|
||||||
|
|
||||||
def check_cuda_result(cuda, result_val):
|
def check_cuda_result(cuda, result_val):
|
||||||
|
@ -34,26 +31,23 @@ def check_cuda_result(cuda, result_val):
|
||||||
raise Exception(f"CUDA exception! ERROR: {error_str}")
|
raise Exception(f"CUDA exception! ERROR: {error_str}")
|
||||||
|
|
||||||
|
|
||||||
# taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
|
def get_compute_capabilities():
|
||||||
def get_compute_capability():
|
"""
|
||||||
# 1. find libcuda.so library (GPU driver) (/usr/lib)
|
1. find libcuda.so library (GPU driver) (/usr/lib)
|
||||||
# init_device -> init variables -> call function by reference
|
init_device -> init variables -> call function by reference
|
||||||
# 2. call extern C function to determine CC
|
2. call extern C function to determine CC
|
||||||
# (https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
|
(https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE__DEPRECATED.html)
|
||||||
# 3. Check for CUDA errors
|
3. Check for CUDA errors
|
||||||
# https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
|
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
|
||||||
|
# bits taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
|
||||||
|
"""
|
||||||
|
|
||||||
# 1. find libcuda.so library (GPU driver) (/usr/lib)
|
# 1. find libcuda.so library (GPU driver) (/usr/lib)
|
||||||
libnames = ("libcuda.so",)
|
try:
|
||||||
for libname in libnames:
|
cuda = ctypes.CDLL("libcuda.so")
|
||||||
try:
|
except OSError:
|
||||||
cuda = ctypes.CDLL(libname)
|
# TODO: shouldn't we error or at least warn here?
|
||||||
except OSError:
|
return None
|
||||||
continue
|
|
||||||
else:
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
raise OSError("could not load any of: " + " ".join(libnames))
|
|
||||||
|
|
||||||
nGpus = ctypes.c_int()
|
nGpus = ctypes.c_int()
|
||||||
cc_major = ctypes.c_int()
|
cc_major = ctypes.c_int()
|
||||||
|
@ -70,104 +64,64 @@ def get_compute_capability():
|
||||||
check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
|
check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
|
||||||
ref_major = ctypes.byref(cc_major)
|
ref_major = ctypes.byref(cc_major)
|
||||||
ref_minor = ctypes.byref(cc_minor)
|
ref_minor = ctypes.byref(cc_minor)
|
||||||
# 2. call extern C function to determine CC
|
# 2. call extern C function to determine CC
|
||||||
check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device))
|
check_cuda_result(
|
||||||
|
cuda, cuda.cuDeviceComputeCapability(ref_major, ref_minor, device)
|
||||||
|
)
|
||||||
ccs.append(f"{cc_major.value}.{cc_minor.value}")
|
ccs.append(f"{cc_major.value}.{cc_minor.value}")
|
||||||
|
|
||||||
# TODO: handle different compute capabilities; for now, take the max
|
return ccs.sort()
|
||||||
ccs.sort()
|
|
||||||
max_cc = ccs[-1]
|
|
||||||
return max_cc
|
|
||||||
|
|
||||||
|
|
||||||
CUDA_RUNTIME_LIB: str = "libcudart.so"
|
# def get_compute_capability()-> Union[List[str, ...], None]: # FIXME: error
|
||||||
|
def get_compute_capability():
|
||||||
|
"""
|
||||||
def tokenize_paths(paths: str) -> Set[Path]:
|
Extracts the highest compute capbility from all available GPUs, as compute
|
||||||
return {Path(ld_path) for ld_path in paths.split(":") if ld_path}
|
capabilities are downwards compatible. If no GPUs are detected, it returns
|
||||||
|
None.
|
||||||
|
"""
|
||||||
def resolve_env_variable(env_var):
|
if ccs := get_compute_capabilities() is not None:
|
||||||
'''Searches a given envirionmental library or path for the CUDA runtime library (libcudart.so)'''
|
# TODO: handle different compute capabilities; for now, take the max
|
||||||
paths: Set[Path] = tokenize_paths(env_var)
|
return ccs[-1]
|
||||||
|
return None
|
||||||
non_existent_directories: Set[Path] = {
|
|
||||||
path for path in paths if not path.exists()
|
|
||||||
}
|
|
||||||
|
|
||||||
if non_existent_directories:
|
|
||||||
print_err(
|
|
||||||
"WARNING: The following directories listed your path were found to "
|
|
||||||
f"be non-existent: {non_existent_directories}"
|
|
||||||
)
|
|
||||||
|
|
||||||
cuda_runtime_libs: Set[Path] = {
|
|
||||||
path / CUDA_RUNTIME_LIB
|
|
||||||
for path in paths
|
|
||||||
if (path / CUDA_RUNTIME_LIB).is_file()
|
|
||||||
} - non_existent_directories
|
|
||||||
|
|
||||||
if len(cuda_runtime_libs) > 1:
|
|
||||||
err_msg = (
|
|
||||||
f"Found duplicate {CUDA_RUNTIME_LIB} files: {cuda_runtime_libs}.."
|
|
||||||
)
|
|
||||||
raise FileNotFoundError(err_msg)
|
|
||||||
elif len(cuda_runtime_libs) == 0: return None # this is not en error, since other envs can contain CUDA
|
|
||||||
else: return next(iter(cuda_runtime_libs)) # for now just return the first
|
|
||||||
|
|
||||||
def get_cuda_runtime_lib_path() -> Union[Path, None]:
|
|
||||||
'''Searches conda installation and environmental paths for a cuda installations.'''
|
|
||||||
|
|
||||||
cuda_runtime_libs = []
|
|
||||||
# CONDA_PREFIX/lib is the default location for a default conda
|
|
||||||
# install of pytorch. This location takes priortiy over all
|
|
||||||
# other defined variables
|
|
||||||
if 'CONDA_PREFIX' in os.environ:
|
|
||||||
lib_conda_path = f'{os.environ["CONDA_PREFIX"]}/lib/'
|
|
||||||
print(lib_conda_path)
|
|
||||||
cuda_runtime_libs.append(resolve_env_variable(lib_conda_path))
|
|
||||||
|
|
||||||
if len(cuda_runtime_libs) == 1: return cuda_runtime_libs[0]
|
|
||||||
|
|
||||||
# if CONDA_PREFIX does not have the library, search the environment
|
|
||||||
# (in particualr LD_LIBRARY PATH)
|
|
||||||
for var in os.environ:
|
|
||||||
cuda_runtime_libs.append(resolve_env_variable(var))
|
|
||||||
|
|
||||||
if len(cuda_runtime_libs) < 1:
|
|
||||||
err_msg = (
|
|
||||||
f"Did not find {CUDA_RUNTIME_LIB} files: {cuda_runtime_libs}.."
|
|
||||||
)
|
|
||||||
raise FileNotFoundError(err_msg)
|
|
||||||
|
|
||||||
return cuda_runtime_libs.pop()
|
|
||||||
|
|
||||||
|
|
||||||
def evaluate_cuda_setup():
|
def evaluate_cuda_setup():
|
||||||
cuda_path = get_cuda_runtime_lib_path()
|
cuda_path = determine_cuda_runtime_lib_path()
|
||||||
print(f'CUDA SETUP: CUDA path found: {cuda_path}')
|
print(f"CUDA SETUP: CUDA path found: {cuda_path}")
|
||||||
cc = get_compute_capability()
|
cc = get_compute_capability()
|
||||||
binary_name = "libbitsandbytes_cpu.so"
|
binary_name = "libbitsandbytes_cpu.so"
|
||||||
|
|
||||||
|
# FIXME: has_gpu is still unused
|
||||||
if not (has_gpu := bool(cc)):
|
if not (has_gpu := bool(cc)):
|
||||||
print(
|
print(
|
||||||
"WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library..."
|
"WARNING: No GPU detected! Check your CUDA paths. Processing to load CPU-only library..."
|
||||||
)
|
)
|
||||||
return binary_name
|
return binary_name
|
||||||
|
|
||||||
|
# 7.5 is the minimum CC vor cublaslt
|
||||||
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
|
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
|
||||||
|
|
||||||
# TODO:
|
# TODO:
|
||||||
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
|
# (1) CUDA missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
|
||||||
# (2) Multiple CUDA versions installed
|
# (2) Multiple CUDA versions installed
|
||||||
|
|
||||||
|
# FIXME: cuda_home is still unused
|
||||||
cuda_home = str(Path(cuda_path).parent.parent)
|
cuda_home = str(Path(cuda_path).parent.parent)
|
||||||
# we use ls -l instead of nvcc to determine the cuda version
|
# we use ls -l instead of nvcc to determine the cuda version
|
||||||
# since most installations will have the libcudart.so installed, but not the compiler
|
# since most installations will have the libcudart.so installed, but not the compiler
|
||||||
ls_output, err = execute_and_return(f"ls -l {cuda_path}")
|
ls_output, err = execute_and_return(f"ls -l {cuda_path}")
|
||||||
major, minor, revision = ls_output.split(' ')[-1].replace('libcudart.so.', '').split('.')
|
major, minor, revision = (
|
||||||
|
ls_output.split(" ")[-1].replace("libcudart.so.", "").split(".")
|
||||||
|
)
|
||||||
cuda_version_string = f"{major}{minor}"
|
cuda_version_string = f"{major}{minor}"
|
||||||
|
|
||||||
binary_name = f'libbitsandbytes_cuda{cuda_version_string}{("" if has_cublaslt else "_nocublaslt")}.so'
|
def get_binary_name():
|
||||||
|
"if not has_cublaslt (CC < 7.5), then we have to choose _nocublaslt.so"
|
||||||
|
bin_base_name = "libbitsandbytes_cuda"
|
||||||
|
if has_cublaslt:
|
||||||
|
return f"{bin_base_name}{cuda_version_string}.so"
|
||||||
|
else:
|
||||||
|
return f"{bin_base_name}_nocublaslt.so"
|
||||||
|
|
||||||
return binary_name
|
return binary_name
|
||||||
|
|
126
bitsandbytes/cuda_setup/paths.py
Normal file
126
bitsandbytes/cuda_setup/paths.py
Normal file
|
@ -0,0 +1,126 @@
|
||||||
|
from pathlib import Path
|
||||||
|
from typing import Set, Union
|
||||||
|
from warnings import warn
|
||||||
|
|
||||||
|
from ..utils import print_stderr
|
||||||
|
from .env_vars import get_potentially_lib_path_containing_env_vars
|
||||||
|
|
||||||
|
|
||||||
|
CUDA_RUNTIME_LIB: str = "libcudart.so"
|
||||||
|
|
||||||
|
|
||||||
|
def purge_unwanted_semicolon(tentative_path: Path) -> Path:
|
||||||
|
"""
|
||||||
|
Special function to handle the following exception:
|
||||||
|
__LMOD_REF_COUNT_PATH=/sw/cuda/11.6.2/bin:2;/mmfs1/home/dettmers/git/sched/bin:1;/mmfs1/home/dettmers/data/anaconda3/bin:1;/mmfs1/home/dettmers/data/anaconda3/condabin:1;/mmfs1/home/dettmers/.local/bin:1;/mmfs1/home/dettmers/bin:1;/usr/local/bin:1;/usr/bin:1;/usr/local/sbin:1;/usr/sbin:1;/mmfs1/home/dettmers/.fzf/bin:1;/mmfs1/home/dettmers/data/local/cuda-11.4/bin:1
|
||||||
|
"""
|
||||||
|
# if ';' in str(tentative_path):
|
||||||
|
# path_as_str, _ = str(tentative_path).split(';')
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
def extract_candidate_paths(paths_list_candidate: str) -> Set[Path]:
|
||||||
|
return {Path(ld_path) for ld_path in paths_list_candidate.split(":") if ld_path}
|
||||||
|
|
||||||
|
|
||||||
|
def remove_non_existent_dirs(candidate_paths: Set[Path]) -> Set[Path]:
|
||||||
|
non_existent_directories: Set[Path] = {
|
||||||
|
path for path in candidate_paths if not path.exists()
|
||||||
|
}
|
||||||
|
|
||||||
|
if non_existent_directories:
|
||||||
|
print_stderr(
|
||||||
|
"WARNING: The following directories listed in your path were found to "
|
||||||
|
f"be non-existent: {non_existent_directories}"
|
||||||
|
)
|
||||||
|
|
||||||
|
return candidate_paths - non_existent_directories
|
||||||
|
|
||||||
|
|
||||||
|
def get_cuda_runtime_lib_paths(candidate_paths: Set[Path]) -> Set[Path]:
|
||||||
|
return {
|
||||||
|
path / CUDA_RUNTIME_LIB
|
||||||
|
for path in candidate_paths
|
||||||
|
if (path / CUDA_RUNTIME_LIB).is_file()
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def resolve_paths_list(paths_list_candidate: str) -> Set[Path]:
|
||||||
|
"""
|
||||||
|
Searches a given environmental var for the CUDA runtime library,
|
||||||
|
i.e. `libcudart.so`.
|
||||||
|
"""
|
||||||
|
return remove_non_existent_dirs(extract_candidate_paths(paths_list_candidate))
|
||||||
|
|
||||||
|
|
||||||
|
def find_cuda_lib_in(paths_list_candidate: str) -> Set[Path]:
|
||||||
|
return get_cuda_runtime_lib_paths(
|
||||||
|
resolve_paths_list(paths_list_candidate)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def warn_in_case_of_duplicates(results_paths: Set[Path]) -> None:
|
||||||
|
if len(results_paths) > 1:
|
||||||
|
warning_msg = (
|
||||||
|
f"Found duplicate {CUDA_RUNTIME_LIB} files: {results_paths}.. "
|
||||||
|
"We'll flip a coin and try one of these, in order to fail forward.\n"
|
||||||
|
"Either way, this might cause trouble in the future:\n"
|
||||||
|
"If you get `CUDA error: invalid device function` errors, the above "
|
||||||
|
"might be the cause and the solution is to make sure only one "
|
||||||
|
f"{CUDA_RUNTIME_LIB} in the paths that we search based on your env."
|
||||||
|
)
|
||||||
|
warn(warning_msg)
|
||||||
|
|
||||||
|
|
||||||
|
def determine_cuda_runtime_lib_path() -> Union[Path, None]:
|
||||||
|
"""
|
||||||
|
Searches for a cuda installations, in the following order of priority:
|
||||||
|
1. active conda env
|
||||||
|
2. LD_LIBRARY_PATH
|
||||||
|
3. any other env vars, while ignoring those that
|
||||||
|
- are known to be unrelated (see `bnb.cuda_setup.env_vars.to_be_ignored`)
|
||||||
|
- don't contain the path separator `/`
|
||||||
|
|
||||||
|
If multiple libraries are found in part 3, we optimistically try one,
|
||||||
|
while giving a warning message.
|
||||||
|
"""
|
||||||
|
candidate_env_vars = get_potentially_lib_path_containing_env_vars()
|
||||||
|
|
||||||
|
if "CONDA_PREFIX" in candidate_env_vars:
|
||||||
|
conda_libs_path = Path(candidate_env_vars["CONDA_PREFIX"]) / "lib"
|
||||||
|
|
||||||
|
conda_cuda_libs = find_cuda_lib_in(str(conda_libs_path))
|
||||||
|
warn_in_case_of_duplicates(conda_cuda_libs)
|
||||||
|
|
||||||
|
if conda_cuda_libs:
|
||||||
|
return next(iter(conda_cuda_libs))
|
||||||
|
|
||||||
|
warn(
|
||||||
|
f'{candidate_env_vars["CONDA_PREFIX"]} did not contain '
|
||||||
|
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...'
|
||||||
|
)
|
||||||
|
|
||||||
|
if "LD_LIBRARY_PATH" in candidate_env_vars:
|
||||||
|
lib_ld_cuda_libs = find_cuda_lib_in(candidate_env_vars["LD_LIBRARY_PATH"])
|
||||||
|
|
||||||
|
if lib_ld_cuda_libs:
|
||||||
|
return next(iter(lib_ld_cuda_libs))
|
||||||
|
warn_in_case_of_duplicates(lib_ld_cuda_libs)
|
||||||
|
|
||||||
|
warn(
|
||||||
|
f'{candidate_env_vars["LD_LIBRARY_PATH"]} did not contain '
|
||||||
|
f'{CUDA_RUNTIME_LIB} as expected! Searching further paths...'
|
||||||
|
)
|
||||||
|
|
||||||
|
remaining_candidate_env_vars = {
|
||||||
|
env_var: value for env_var, value in candidate_env_vars.items()
|
||||||
|
if env_var not in {"CONDA_PREFIX", "LD_LIBRARY_PATH"}
|
||||||
|
}
|
||||||
|
|
||||||
|
cuda_runtime_libs = set()
|
||||||
|
for env_var, value in remaining_candidate_env_vars:
|
||||||
|
cuda_runtime_libs.update(find_cuda_lib_in(value))
|
||||||
|
|
||||||
|
warn_in_case_of_duplicates(cuda_runtime_libs)
|
||||||
|
|
||||||
|
return next(iter(cuda_runtime_libs)) if cuda_runtime_libs else set()
|
|
@ -1,9 +1,9 @@
|
||||||
import sys
|
|
||||||
import shlex
|
import shlex
|
||||||
import subprocess
|
import subprocess
|
||||||
|
import sys
|
||||||
from typing import Tuple
|
from typing import Tuple
|
||||||
|
|
||||||
|
|
||||||
def execute_and_return(command_string: str) -> Tuple[str, str]:
|
def execute_and_return(command_string: str) -> Tuple[str, str]:
|
||||||
def _decode(subprocess_err_out_tuple):
|
def _decode(subprocess_err_out_tuple):
|
||||||
return tuple(
|
return tuple(
|
||||||
|
@ -24,9 +24,9 @@ def execute_and_return(command_string: str) -> Tuple[str, str]:
|
||||||
return std_out, std_err
|
return std_out, std_err
|
||||||
|
|
||||||
|
|
||||||
def print_err(s: str) -> None:
|
def print_stderr(s: str) -> None:
|
||||||
print(s, file=sys.stderr)
|
print(s, file=sys.stderr)
|
||||||
|
|
||||||
|
|
||||||
def warn_of_missing_prerequisite(s: str) -> None:
|
def warn_of_missing_prerequisite(s: str) -> None:
|
||||||
print_err("WARNING, missing pre-requisite: " + s)
|
print_stderr("WARNING, missing pre-requisite: " + s)
|
||||||
|
|
112
quicktest.py
112
quicktest.py
|
@ -1,112 +0,0 @@
|
||||||
from itertools import product
|
|
||||||
|
|
||||||
import torch
|
|
||||||
|
|
||||||
import bitsandbytes as bnb
|
|
||||||
import bitsandbytes.functional as F
|
|
||||||
|
|
||||||
|
|
||||||
def test_igemmlt(dim1, dim2, dim3, dim4, dims, ldb):
|
|
||||||
k = 25
|
|
||||||
for i in range(k):
|
|
||||||
if dims == 2:
|
|
||||||
A = torch.randint(-128, 127, size=(dim1, dim3), device="cuda").to(
|
|
||||||
torch.int8
|
|
||||||
)
|
|
||||||
elif dims == 3:
|
|
||||||
A = torch.randint(
|
|
||||||
-128, 127, size=(dim1, dim2, dim3), device="cuda"
|
|
||||||
).to(torch.int8)
|
|
||||||
B = torch.randint(-128, 127, size=(dim4, dim3), device="cuda").to(
|
|
||||||
torch.int8
|
|
||||||
)
|
|
||||||
C1 = torch.matmul(A.float(), B.t().float())
|
|
||||||
|
|
||||||
A2, SA = F.transform(A, "col32")
|
|
||||||
B2, SB = F.transform(B, "colx")
|
|
||||||
if dims == 2:
|
|
||||||
C2, SC = F.transform(
|
|
||||||
torch.zeros(
|
|
||||||
A.shape[0], B.shape[0], dtype=torch.int32, device="cuda"
|
|
||||||
),
|
|
||||||
"col32",
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
C2, SC = F.transform(
|
|
||||||
torch.zeros(
|
|
||||||
A.shape[0],
|
|
||||||
A.shape[1],
|
|
||||||
B.shape[0],
|
|
||||||
dtype=torch.int32,
|
|
||||||
device="cuda",
|
|
||||||
),
|
|
||||||
"col32",
|
|
||||||
)
|
|
||||||
F.igemmlt(A2, B2, C2, SA, SB, SC)
|
|
||||||
C3, S = F.transform(C2, "row", state=SC)
|
|
||||||
# torch.testing.assert_allclose(C1, C3.float())
|
|
||||||
# print(C1)
|
|
||||||
# print(C2)
|
|
||||||
# print(C3)
|
|
||||||
allclose = torch.allclose(C1, C3.float())
|
|
||||||
if allclose:
|
|
||||||
print(C1)
|
|
||||||
print(C2)
|
|
||||||
print(C3)
|
|
||||||
|
|
||||||
## transposed
|
|
||||||
# A = torch.randint(-128, 127, size=(dim4, dim3), device='cuda').to(torch.int8)
|
|
||||||
# if dims == 2:
|
|
||||||
# B = torch.randint(-128, 127, size=(dim1, dim3), device='cuda').to(torch.int8)
|
|
||||||
# C1 = torch.matmul(A.float(), B.float().t())
|
|
||||||
# elif dims == 3:
|
|
||||||
# B = torch.randint(-128, 127, size=(dim1, dim2, dim3), device='cuda').to(torch.int8)
|
|
||||||
# C1 = torch.matmul(B.float(), A.t().float())
|
|
||||||
# C1 = C1.permute([2, 0, 1])
|
|
||||||
|
|
||||||
# A2, SA = F.transform(A, 'col32')
|
|
||||||
# B2, SB = F.transform(B, 'colx')
|
|
||||||
# if dims == 2:
|
|
||||||
# C2, SC = F.transform(torch.zeros(A.shape[0], B.shape[0], dtype=torch.int32, device='cuda'), 'col32')
|
|
||||||
# else:
|
|
||||||
# C2 = torch.zeros(A.shape[0], B.shape[0], B.shape[1], dtype=torch.int32, device='cuda')
|
|
||||||
# state = (C2.shape, 'row', A.shape[0])
|
|
||||||
# C2, SC = F.transform(C2, 'col32', state=state)
|
|
||||||
# F.igemmlt(A2, B2, C2, SA, SB, SC)
|
|
||||||
# C3, S = F.transform(C2, 'row', state=SC, ld=[0])
|
|
||||||
# torch.testing.assert_allclose(C1, C3.float())
|
|
||||||
|
|
||||||
## weight update
|
|
||||||
# if dims == 3:
|
|
||||||
# A = torch.randint(-128, 127, size=(dim1, dim2, dim3), device='cuda').to(torch.int8)
|
|
||||||
# B = torch.randint(-128, 127, size=(dim1, dim2, dim4), device='cuda').to(torch.int8)
|
|
||||||
# C1 = torch.matmul(B.view(-1, B.shape[-1]).t().float(), A.view(-1, A.shape[-1]).float())
|
|
||||||
|
|
||||||
# A2, SA = F.transform(A.view(-1, A.shape[-1]).t().contiguous(), 'colx')
|
|
||||||
# B2, SB = F.transform(B.view(-1, B.shape[-1]).t().contiguous(), 'col32')
|
|
||||||
# C2 = torch.zeros(B.shape[-1], A.shape[-1], dtype=torch.int32, device='cuda')
|
|
||||||
# C2, SC = F.transform(C2, 'col32')
|
|
||||||
# F.igemmlt(B2, A2, C2, SB, SA, SC)
|
|
||||||
# C3, S = F.transform(C2, 'row', state=SC)
|
|
||||||
# torch.testing.assert_allclose(C1, C3.float())
|
|
||||||
|
|
||||||
|
|
||||||
dims = (2, 3)
|
|
||||||
ldb = [0]
|
|
||||||
|
|
||||||
n = 2
|
|
||||||
dim1 = torch.randint(1, 256, size=(n,)).tolist()
|
|
||||||
dim2 = torch.randint(32, 512, size=(n,)).tolist()
|
|
||||||
dim3 = torch.randint(32, 1024, size=(n,)).tolist()
|
|
||||||
dim4 = torch.randint(32, 1024, size=(n,)).tolist()
|
|
||||||
values = list(product(dim1, dim2, dim3, dim4, dims, ldb))
|
|
||||||
|
|
||||||
for ldb in range(32, 4096, 32):
|
|
||||||
# for ldb in [None]:
|
|
||||||
val = test_igemmlt(2, 2, 2, 2, 2, ldb)
|
|
||||||
if val:
|
|
||||||
print(val, ldb)
|
|
||||||
else:
|
|
||||||
print("nope", ldb)
|
|
||||||
# for val in values:
|
|
||||||
# test_igemmlt(*val)
|
|
|
@ -7,10 +7,38 @@ from typing import List, NamedTuple
|
||||||
from bitsandbytes.cuda_setup import (
|
from bitsandbytes.cuda_setup import (
|
||||||
CUDA_RUNTIME_LIB,
|
CUDA_RUNTIME_LIB,
|
||||||
evaluate_cuda_setup,
|
evaluate_cuda_setup,
|
||||||
get_cuda_runtime_lib_path,
|
determine_cuda_runtime_lib_path,
|
||||||
tokenize_paths,
|
extract_candidate_paths,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
"""
|
||||||
|
'LD_LIBRARY_PATH': ':/mnt/D/titus/local/cuda-11.1/lib64/'
|
||||||
|
'CONDA_EXE': '/mnt/D/titus/miniconda/bin/conda'
|
||||||
|
'LESSCLOSE': '/usr/bin/lesspipe %s %s'
|
||||||
|
'OLDPWD': '/mnt/D/titus/src'
|
||||||
|
'CONDA_PREFIX': '/mnt/D/titus/miniconda/envs/8-bit'
|
||||||
|
'SSH_AUTH_SOCK': '/mnt/D/titus/.ssh/ssh-agent.tim-uw.sock'
|
||||||
|
'CONDA_PREFIX_1': '/mnt/D/titus/miniconda'
|
||||||
|
'PWD': '/mnt/D/titus/src/8-bit'
|
||||||
|
'HOME': '/mnt/D/titus'
|
||||||
|
'CONDA_PYTHON_EXE': '/mnt/D/titus/miniconda/bin/python'
|
||||||
|
'CUDA_HOME': '/mnt/D/titus/local/cuda-11.1/'
|
||||||
|
'TMUX': '/tmp/tmux-1007/default,59286,1'
|
||||||
|
'XDG_DATA_DIRS': '/usr/local/share:/usr/share:/var/lib/snapd/desktop'
|
||||||
|
'SSH_TTY': '/dev/pts/0'
|
||||||
|
'MAIL': '/var/mail/titus'
|
||||||
|
'SHELL': '/bin/bash'
|
||||||
|
'DBUS_SESSION_BUS_ADDRESS': 'unix:path=/run/user/1007/bus'
|
||||||
|
'XDG_RUNTIME_DIR': '/run/user/1007'
|
||||||
|
'PATH': '/mnt/D/titus/miniconda/envs/8-bit/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin:/mnt/D/titus/local/cuda-11.1/bin'
|
||||||
|
'LESSOPEN': '| /usr/bin/lesspipe %s'
|
||||||
|
'_': '/mnt/D/titus/miniconda/envs/8-bit/bin/python'
|
||||||
|
# any that include 'CONDA' that are not 'CONDA_PREFIX'
|
||||||
|
|
||||||
|
# we search for
|
||||||
|
'CUDA_HOME': '/mnt/D/titus/local/cuda-11.1/'
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
class InputAndExpectedOutput(NamedTuple):
|
class InputAndExpectedOutput(NamedTuple):
|
||||||
input: str
|
input: str
|
||||||
|
@ -47,20 +75,20 @@ HAPPY_PATH__LD_LIB_TEST_PATHS: List[InputAndExpectedOutput] = [
|
||||||
|
|
||||||
@pytest.fixture(params=HAPPY_PATH__LD_LIB_TEST_PATHS)
|
@pytest.fixture(params=HAPPY_PATH__LD_LIB_TEST_PATHS)
|
||||||
def happy_path_path_string(tmpdir, request):
|
def happy_path_path_string(tmpdir, request):
|
||||||
for path in tokenize_paths(request.param):
|
for path in extract_candidate_paths(request.param):
|
||||||
test_dir.mkdir()
|
test_dir.mkdir()
|
||||||
if CUDA_RUNTIME_LIB in path:
|
if CUDA_RUNTIME_LIB in path:
|
||||||
(test_input / CUDA_RUNTIME_LIB).touch()
|
(test_input / CUDA_RUNTIME_LIB).touch()
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("test_input, expected", HAPPY_PATH__LD_LIB_TEST_PATHS)
|
@pytest.mark.parametrize("test_input, expected", HAPPY_PATH__LD_LIB_TEST_PATHS)
|
||||||
def test_get_cuda_runtime_lib_path__happy_path(
|
def test_determine_cuda_runtime_lib_path__happy_path(
|
||||||
tmp_path, test_input: str, expected: str
|
tmp_path, test_input: str, expected: str
|
||||||
):
|
):
|
||||||
for path in tokenize_paths(test_input):
|
for path in extract_candidate_paths(test_input):
|
||||||
path.mkdir()
|
path.mkdir()
|
||||||
(path / CUDA_RUNTIME_LIB).touch()
|
(path / CUDA_RUNTIME_LIB).touch()
|
||||||
assert get_cuda_runtime_lib_path(test_input) == expected
|
assert determine_cuda_runtime_lib_path(test_input) == expected
|
||||||
|
|
||||||
|
|
||||||
UNHAPPY_PATH__LD_LIB_TEST_PATHS = [
|
UNHAPPY_PATH__LD_LIB_TEST_PATHS = [
|
||||||
|
@ -70,21 +98,21 @@ UNHAPPY_PATH__LD_LIB_TEST_PATHS = [
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.parametrize("test_input", UNHAPPY_PATH__LD_LIB_TEST_PATHS)
|
@pytest.mark.parametrize("test_input", UNHAPPY_PATH__LD_LIB_TEST_PATHS)
|
||||||
def test_get_cuda_runtime_lib_path__unhappy_path(tmp_path, test_input: str):
|
def test_determine_cuda_runtime_lib_path__unhappy_path(tmp_path, test_input: str):
|
||||||
test_input = tmp_path / test_input
|
test_input = tmp_path / test_input
|
||||||
(test_input / CUDA_RUNTIME_LIB).touch()
|
(test_input / CUDA_RUNTIME_LIB).touch()
|
||||||
with pytest.raises(FileNotFoundError) as err_info:
|
with pytest.raises(FileNotFoundError) as err_info:
|
||||||
get_cuda_runtime_lib_path(test_input)
|
determine_cuda_runtime_lib_path(test_input)
|
||||||
assert all(match in err_info for match in {"duplicate", CUDA_RUNTIME_LIB})
|
assert all(match in err_info for match in {"duplicate", CUDA_RUNTIME_LIB})
|
||||||
|
|
||||||
|
|
||||||
def test_get_cuda_runtime_lib_path__non_existent_dir(capsys, tmp_path):
|
def test_determine_cuda_runtime_lib_path__non_existent_dir(capsys, tmp_path):
|
||||||
existent_dir = tmp_path / "a/b"
|
existent_dir = tmp_path / "a/b"
|
||||||
existent_dir.mkdir()
|
existent_dir.mkdir()
|
||||||
non_existent_dir = tmp_path / "c/d" # non-existent dir
|
non_existent_dir = tmp_path / "c/d" # non-existent dir
|
||||||
test_input = ":".join([str(existent_dir), str(non_existent_dir)])
|
test_input = ":".join([str(existent_dir), str(non_existent_dir)])
|
||||||
|
|
||||||
get_cuda_runtime_lib_path(test_input)
|
determine_cuda_runtime_lib_path(test_input)
|
||||||
std_err = capsys.readouterr().err
|
std_err = capsys.readouterr().err
|
||||||
|
|
||||||
assert all(match in std_err for match in {"WARNING", "non-existent"})
|
assert all(match in std_err for match in {"WARNING", "non-existent"})
|
||||||
|
@ -95,14 +123,17 @@ def test_full_system():
|
||||||
|
|
||||||
# if CONDA_PREFIX exists, it has priority before all other env variables
|
# if CONDA_PREFIX exists, it has priority before all other env variables
|
||||||
# but it does not contain the library directly, so we need to look at the a sub-folder
|
# but it does not contain the library directly, so we need to look at the a sub-folder
|
||||||
version = ''
|
version = ""
|
||||||
if 'CONDA_PREFIX' in os.environ:
|
if "CONDA_PREFIX" in os.environ:
|
||||||
ls_output, err = bnb.utils.execute_and_return(f'ls -l {os.environ["CONDA_PREFIX"]}/lib/libcudart.so')
|
ls_output, err = bnb.utils.execute_and_return(
|
||||||
major, minor, revision = ls_output.split(' ')[-1].replace('libcudart.so.', '').split('.')
|
f'ls -l {os.environ["CONDA_PREFIX"]}/lib/libcudart.so'
|
||||||
version = float(f'{major}.{minor}')
|
)
|
||||||
|
major, minor, revision = (
|
||||||
|
ls_output.split(" ")[-1].replace("libcudart.so.", "").split(".")
|
||||||
|
)
|
||||||
|
version = float(f"{major}.{minor}")
|
||||||
|
|
||||||
|
if version == "" and "LD_LIBRARY_PATH":
|
||||||
if version == '' and 'LD_LIBRARY_PATH':
|
|
||||||
ld_path = os.environ["LD_LIBRARY_PATH"]
|
ld_path = os.environ["LD_LIBRARY_PATH"]
|
||||||
paths = ld_path.split(":")
|
paths = ld_path.split(":")
|
||||||
version = ""
|
version = ""
|
||||||
|
|
Loading…
Reference in New Issue
Block a user