req_gradA for casted & more efficient and accurate fp16 backward

This commit is contained in:
dbaranchuk 2022-08-29 00:56:08 +03:00
parent b3fee1ed6a
commit 8d34d36f15

View File

@ -213,10 +213,6 @@ class MatMul8bitLt(torch.autograd.Function):
else:
return torch.empty(A.shape[:-1]+B.shape[:1], dtype=torch.float16, device=A.device)
# Cast A to fp16
A_dtype = A.dtype
A = A.to(torch.float16)
# 1. Quantize A
# 2. Quantize B
# 3. Matmul
@ -229,6 +225,11 @@ class MatMul8bitLt(torch.autograd.Function):
input_shape = A.shape
if state.outlier_pool is None:
state.outlier_pool = GlobalOutlierPooler.get_instance()
# Cast A to fp16
A_dtype = A.dtype
A = A.to(torch.float16)
assert (
A.dtype == torch.float16
), f"The input data type needs to be fp16 but {A.dtype} was found!"
@ -337,14 +338,14 @@ class MatMul8bitLt(torch.autograd.Function):
bias_grad = (None if ctx.bias is None else torch.zeros_like(ctx.bias))
return torch.zeros_like(ctx.A), torch.zeros_like(ctx.B), None, bias_grad, None
# Cast grad_output to fp16
grad_output_dtype = grad_output.dtype
grad_output.to(torch.float16)
req_gradA, req_gradB, req_gradBias = ctx.req_grads
assert not req_gradB, "TODO: support weight updates as well"
state = ctx.state
# Cast grad_output to fp16
grad_output_dtype = grad_output.dtype
grad_output = grad_output.to(torch.float16)
if len(grad_output.shape) == 3:
grad_output = grad_output.reshape(
-1, grad_output.shape[-1]
@ -354,9 +355,9 @@ class MatMul8bitLt(torch.autograd.Function):
if req_gradA:
CB = state.CB.half()
SCB = state.SCB.unsqueeze(1).half()
B = (CB * SCB) / 127.0
grad_A = torch.mm(grad_output, B).view(ctx.grad_shape)
SCB = (state.SCB.unsqueeze(1) / 127.0).half()
CB *= SCB
grad_A = torch.mm(grad_output, CB).view(ctx.grad_shape)
if req_gradBias:
grad_bias = grad_output.sum(0)