forked from mrq/bitsandbytes-rocm
Merge branch 'main' into remove_unused_code
This commit is contained in:
commit
aca55881b9
14
README.md
14
README.md
|
@ -23,12 +23,12 @@ Resources:
|
|||
1. Comment out torch.nn.Linear: ``#linear = torch.nn.Linear(...)``
|
||||
2. Add bnb 8-bit linear light module: ``linear = bnb.nn.Linear8bitLt(...)`` (base arguments stay the same)
|
||||
3. There are two modes:
|
||||
- Mixed 8-bit training with 16-bit main weights. Pass the argument ``use_fp16_weights=True`` (default)
|
||||
- Int8 inference. Pass the argument ``use_fp16_weights=False``
|
||||
- Mixed 8-bit training with 16-bit main weights. Pass the argument ``has_fp16_weights=True`` (default)
|
||||
- Int8 inference. Pass the argument ``has_fp16_weights=False``
|
||||
4. To use the full LLM.int8() method, use the ``threshold=k`` argument. We recommend ``k=6.0``.
|
||||
```python
|
||||
# LLM.int8()
|
||||
linear = bnb.nn.Linear8bitLt(dim1, dim2, bias=True, use_fp16_weights=False, threshold=6.0)
|
||||
linear = bnb.nn.Linear8bitLt(dim1, dim2, bias=True, has_fp16_weights=False, threshold=6.0)
|
||||
# inputs need to be fp16
|
||||
out = linear(x.to(torch.float16))
|
||||
```
|
||||
|
@ -115,7 +115,8 @@ We thank Fabio Cannizzo for his work on [FastBinarySearch](https://github.com/fa
|
|||
|
||||
## How to cite us
|
||||
If you found this library and found LLM.int8() useful, please consider citing our work:
|
||||
```
|
||||
|
||||
```bibtex
|
||||
@article{dettmers2022llmint8,
|
||||
title={LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale},
|
||||
author={Dettmers, Tim and Lewis, Mike and Belkada, Younes and Zettlemoyer, Luke},
|
||||
|
@ -124,8 +125,9 @@ If you found this library and found LLM.int8() useful, please consider citing ou
|
|||
}
|
||||
```
|
||||
|
||||
For 8-bit optimizers or quantization routines please consider citing the following work.
|
||||
```
|
||||
For 8-bit optimizers or quantization routines, please consider citing the following work:
|
||||
|
||||
```bibtex
|
||||
@article{dettmers2022optimizers,
|
||||
title={8-bit Optimizers via Block-wise Quantization},
|
||||
author={Dettmers, Tim and Lewis, Mike and Shleifer, Sam and Zettlemoyer, Luke},
|
||||
|
|
|
@ -26,7 +26,7 @@ def check_cuda_result(cuda, result_val):
|
|||
if result_val != 0:
|
||||
error_str = ctypes.c_char_p()
|
||||
cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
|
||||
raise Exception(f"CUDA exception! Error code: {error_str.value.decode()}")
|
||||
print(f"CUDA exception! Error code: {error_str.value.decode()}")
|
||||
|
||||
def get_cuda_version(cuda, cudart_path):
|
||||
# https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART____VERSION.html#group__CUDART____VERSION
|
||||
|
@ -55,7 +55,7 @@ def get_cuda_lib_handle():
|
|||
cuda = ctypes.CDLL("libcuda.so")
|
||||
except OSError:
|
||||
# TODO: shouldn't we error or at least warn here?
|
||||
raise Exception('CUDA SETUP: ERROR! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
|
||||
print('CUDA SETUP: WARNING! libcuda.so not found! Do you have a CUDA driver installed? If you are on a cluster, make sure you are on a CUDA machine!')
|
||||
return None
|
||||
check_cuda_result(cuda, cuda.cuInit(0))
|
||||
|
||||
|
@ -116,6 +116,10 @@ def evaluate_cuda_setup():
|
|||
print('For effortless bug reporting copy-paste your error into this form: https://docs.google.com/forms/d/e/1FAIpQLScPB8emS3Thkp66nvqwmjTEgxp8Y9ufuWTzFyr9kJ5AoI47dQ/viewform?usp=sf_link')
|
||||
print('='*80)
|
||||
binary_name = "libbitsandbytes_cpu.so"
|
||||
#if not torch.cuda.is_available():
|
||||
#print('No GPU detected. Loading CPU library...')
|
||||
#return binary_name
|
||||
|
||||
cudart_path = determine_cuda_runtime_lib_path()
|
||||
if cudart_path is None:
|
||||
print(
|
||||
|
|
|
@ -184,14 +184,9 @@ def create_dynamic_map(signed=True, n=7):
|
|||
|
||||
|
||||
def get_special_format_str():
|
||||
if not torch.cuda.is_available(): return 'col_turing'
|
||||
major, minor = torch.cuda.get_device_capability()
|
||||
if major < 7:
|
||||
print(
|
||||
f"Device with CUDA capability of {major} not supported for 8-bit matmul. Device has no tensor cores!"
|
||||
)
|
||||
assert major >= 7
|
||||
|
||||
if major == 7:
|
||||
if major <= 7:
|
||||
return "col_turing"
|
||||
elif major == 8:
|
||||
return "col_ampere"
|
||||
|
@ -1667,21 +1662,6 @@ def double_quant(
|
|||
return out_row, out_col, row_stats, col_stats, coo_tensor
|
||||
|
||||
|
||||
def get_special_format_str():
|
||||
major, minor = torch.cuda.get_device_capability()
|
||||
if major < 7:
|
||||
print(
|
||||
f"Device with CUDA capability of {major} not supported for 8-bit matmul. Device has no tensor cores!"
|
||||
)
|
||||
assert major >= 7
|
||||
|
||||
if major == 7: return 'col_turing'
|
||||
elif major == 8: return 'col_ampere'
|
||||
else: return 'col_turing'
|
||||
|
||||
|
||||
|
||||
|
||||
def transform(A, to_order, from_order='row', out=None, transpose=False, state=None, ld=None):
|
||||
prev_device = pre_call(A.device)
|
||||
if state is None: state = (A.shape, from_order)
|
||||
|
|
|
@ -5,13 +5,12 @@
|
|||
|
||||
from bitsandbytes.cextension import COMPILED_WITH_CUDA
|
||||
|
||||
if COMPILED_WITH_CUDA:
|
||||
from .adam import Adam, Adam8bit, Adam32bit
|
||||
from .adamw import AdamW, AdamW8bit, AdamW32bit
|
||||
from .sgd import SGD, SGD8bit, SGD32bit
|
||||
from .lars import LARS, LARS8bit, LARS32bit, PytorchLARS
|
||||
from .lamb import LAMB, LAMB8bit, LAMB32bit
|
||||
from .rmsprop import RMSprop, RMSprop8bit, RMSprop32bit
|
||||
from .adagrad import Adagrad, Adagrad8bit, Adagrad32bit
|
||||
from .adam import Adam, Adam8bit, Adam32bit
|
||||
from .adamw import AdamW, AdamW8bit, AdamW32bit
|
||||
from .sgd import SGD, SGD8bit, SGD32bit
|
||||
from .lars import LARS, LARS8bit, LARS32bit, PytorchLARS
|
||||
from .lamb import LAMB, LAMB8bit, LAMB32bit
|
||||
from .rmsprop import RMSprop, RMSprop8bit, RMSprop32bit
|
||||
from .adagrad import Adagrad, Adagrad8bit, Adagrad32bit
|
||||
|
||||
from .optimizer import GlobalOptimManager
|
||||
|
|
|
@ -371,7 +371,11 @@ template void transform<int32_t, COL32, ROW, false, 32>(cublasLtHandle_t ltHandl
|
|||
template <int FORMATB, int DTYPE_OUT, int SCALE_ROWS> int igemmlt(cublasLtHandle_t ltHandle, int m, int n, int k, const int8_t *A, const int8_t *B, void *C, float *row_scale, int lda, int ldb, int ldc)
|
||||
{
|
||||
#ifdef NO_CUBLASLT
|
||||
printf("ERROR: Your GPU does not support Int8 Matmul!");
|
||||
cout << "" << endl;
|
||||
cout << "=============================================" << endl;
|
||||
cout << "ERROR: Your GPU does not support Int8 Matmul!" << endl;
|
||||
cout << "=============================================" << endl;
|
||||
cout << "" << endl;
|
||||
assert(false);
|
||||
|
||||
return 0;
|
||||
|
|
2
setup.py
2
setup.py
|
@ -18,7 +18,7 @@ def read(fname):
|
|||
|
||||
setup(
|
||||
name=f"bitsandbytes",
|
||||
version=f"0.32.1",
|
||||
version=f"0.32.2",
|
||||
author="Tim Dettmers",
|
||||
author_email="dettmers@cs.washington.edu",
|
||||
description="8-bit optimizers and matrix multiplication routines.",
|
||||
|
|
|
@ -40,6 +40,7 @@ names = [
|
|||
ids=names,
|
||||
)
|
||||
def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
|
||||
if not torch.cuda.is_available(): pytest.skip('No GPU found.')
|
||||
if dim2 > 0:
|
||||
dim2 = dim2 - (dim2 % 16)
|
||||
dim3 = dim3 - (dim3 % 16)
|
||||
|
@ -306,6 +307,7 @@ def test_matmullt(
|
|||
has_fp16_weights,
|
||||
has_bias
|
||||
):
|
||||
if not torch.cuda.is_available(): pytest.skip('No GPU found.')
|
||||
dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
|
||||
dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
|
||||
outlier_dim = torch.randint(0, dimA[1], size=(dimA[1] // 8,), device="cuda")
|
||||
|
|
|
@ -1813,16 +1813,16 @@ def test_spmm_coo_dequant(dim1, dim2, dtype):
|
|||
|
||||
|
||||
batch_size = 1
|
||||
seqdim = 2048
|
||||
seqdim = 1
|
||||
values = []
|
||||
values.append((batch_size, seqdim, 768, 4 * 768))
|
||||
#values.append((batch_size, seqdim, 768, 4 * 768))
|
||||
# values.append((batch_size, seqdim, 1024, 4*1024))
|
||||
# values.append((batch_size, seqdim, 1536, 4*1536))
|
||||
# values.append((batch_size, seqdim, 2048, 4*2048))
|
||||
# values.append((batch_size, seqdim, 2560, 4*2560))
|
||||
# values.append((batch_size, seqdim, 4096, 4*4096))
|
||||
# values.append((batch_size, seqdim, 5140, 4*5140))
|
||||
# values.append((batch_size, seqdim, 12288, 4*12288))
|
||||
values.append((batch_size, seqdim, 12288, 4*12288))
|
||||
names = [
|
||||
"batch_{0}_seq_{1}_model_{2}_hidden_{3}".format(*vals) for vals in values
|
||||
]
|
||||
|
@ -1830,6 +1830,7 @@ names = [
|
|||
|
||||
@pytest.mark.parametrize("batch, seq, model, hidden", values, ids=names)
|
||||
def test_bench_matmul(batch, seq, model, hidden):
|
||||
iters = 128
|
||||
formatB = F.get_special_format_str()
|
||||
|
||||
A = torch.randn(batch, seq, model, device="cuda").half()
|
||||
|
@ -1848,28 +1849,33 @@ def test_bench_matmul(batch, seq, model, hidden):
|
|||
linearMixedBit.eval()
|
||||
|
||||
# warmup
|
||||
for i in range(100):
|
||||
for i in range(iters):
|
||||
torch.matmul(A, B.t())
|
||||
torch.cuda.synchronize()
|
||||
print("")
|
||||
|
||||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
for i in range(100):
|
||||
for i in range(iters):
|
||||
torch.matmul(A, B.t())
|
||||
torch.cuda.synchronize()
|
||||
print(
|
||||
f"pytorch: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
|
||||
f"pytorch fp16: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
|
||||
)
|
||||
|
||||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
for i in range(100):
|
||||
for i in range(iters):
|
||||
bnb.matmul(A, B)
|
||||
torch.cuda.synchronize()
|
||||
print(
|
||||
f"bnb lt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
|
||||
)
|
||||
print(f"CB -> CxB conversion (each iteration): [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
|
||||
|
||||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
for i in range(iters):
|
||||
bnb.matmul(A, B, threshold=6.0)
|
||||
torch.cuda.synchronize()
|
||||
print(f"CB -> CxB conversion + threshold: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
|
||||
|
||||
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=0.0)
|
||||
C32A, SA = F.transform(CA, "col32")
|
||||
|
@ -1877,18 +1883,16 @@ def test_bench_matmul(batch, seq, model, hidden):
|
|||
CxB, SB = F.transform(CB, to_order=formatB)
|
||||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
for i in range(100):
|
||||
for i in range(iters):
|
||||
out32, Sout32 = F.igemmlt(C32A, CxB, SA, SB)
|
||||
torch.cuda.synchronize()
|
||||
print(
|
||||
f"igemmlt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
|
||||
)
|
||||
print(f"no overhead matmul-lt: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
|
||||
|
||||
BA, statsB = F.vectorwise_quant(B, dim=1)
|
||||
CxB, SB = F.nvidia_transform(CB, to_order=formatB)
|
||||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
for i in range(100):
|
||||
for i in range(iters):
|
||||
A2 = A.view(-1, A.shape[-1]).contiguous()
|
||||
CA, statsA = F.vectorwise_quant(A2, dim=1)
|
||||
C32A, SA = F.nvidia_transform(CA, "col32")
|
||||
|
@ -1896,15 +1900,13 @@ def test_bench_matmul(batch, seq, model, hidden):
|
|||
Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32)
|
||||
F.vectorwise_mm_dequant(Cout, statsA, statsB.t())
|
||||
torch.cuda.synchronize()
|
||||
print(
|
||||
f"vector pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
|
||||
)
|
||||
#print(f"vector pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
|
||||
|
||||
BA, statsB = F.vectorwise_quant(B, dim=1, quant_type="linear")
|
||||
CxB, SB = F.nvidia_transform(CB, to_order=formatB)
|
||||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
for i in range(100):
|
||||
for i in range(iters):
|
||||
A2 = A.view(-1, A.shape[-1]).contiguous()
|
||||
CA, statsA = F.vectorwise_quant(A2, dim=1, quant_type="linear")
|
||||
C32A, SA = F.nvidia_transform(CA, "col32")
|
||||
|
@ -1912,14 +1914,12 @@ def test_bench_matmul(batch, seq, model, hidden):
|
|||
Cout, Sout = F.nvidia_transform(out32, "row", state=Sout32)
|
||||
out = Cout * statsB * statsA * (1.0 / (127 * 127))
|
||||
torch.cuda.synchronize()
|
||||
print(
|
||||
f"linear pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s"
|
||||
)
|
||||
#print(f"linear pytorch + nvidia: [{batch},{seq},{model}], [{model},{hidden}]->[{batch},{seq},{hidden}]: {time.time()-t0:.4f}s")
|
||||
|
||||
linear8bit(A)
|
||||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
for i in range(100):
|
||||
for i in range(iters):
|
||||
linear8bit(A)
|
||||
torch.cuda.synchronize()
|
||||
print(
|
||||
|
@ -1929,7 +1929,7 @@ def test_bench_matmul(batch, seq, model, hidden):
|
|||
linearMixedBit(A)
|
||||
torch.cuda.synchronize()
|
||||
t0 = time.time()
|
||||
for i in range(100):
|
||||
for i in range(iters):
|
||||
linearMixedBit(A)
|
||||
torch.cuda.synchronize()
|
||||
print(
|
||||
|
|
Loading…
Reference in New Issue
Block a user