ran black and isort for coherent code formatting

This commit is contained in:
Titus von Koeller 2022-08-01 03:31:48 -07:00
parent 597a8521b2
commit bfa0e33294
25 changed files with 3855 additions and 1987 deletions

View File

@ -1,16 +1,18 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .nn import modules
from .autograd._functions import mm_cublas, bmm_cublas, matmul_cublas, matmul, MatmulLtState
from .autograd._functions import (MatmulLtState, bmm_cublas, matmul,
matmul_cublas, mm_cublas)
from .cextension import COMPILED_WITH_CUDA
from .nn import modules
if COMPILED_WITH_CUDA:
from .optim import adam
__pdoc__ = {'libbitsandbytes': False,
'optim.optimizer.Optimizer8bit': False,
'optim.optimizer.MockArgs': False
}
__pdoc__ = {
"libbitsandbytes": False,
"optim.optimizer.Optimizer8bit": False,
"optim.optimizer.MockArgs": False,
}

View File

@ -1,21 +1,24 @@
from dataclasses import dataclass
import torch
import bitsandbytes as bnb
import bitsandbytes.functional as F
from dataclasses import dataclass
tensor = torch.Tensor
'''
"""
This class pools outlier dimensions across layers.
This is particularly important for small models where outlier features
are less systematic and occur with low frequency.
'''
"""
class GlobalOutlierPooler(object):
_instance = None
def __init__(self):
raise RuntimeError('Call get_instance() instead')
raise RuntimeError("Call get_instance() instead")
def initialize(self):
self.outliers = set()
@ -29,25 +32,29 @@ class GlobalOutlierPooler(object):
return cls._instance
def add_outliers(self, outlier_idx, feature_dim):
if self.model_dim is None: self.model_dim = feature_dim
if feature_dim != self.model_dim: return # we do not encode outliers for the 2nd FFN layer
if self.model_dim is None:
self.model_dim = feature_dim
if feature_dim != self.model_dim:
return # we do not encode outliers for the 2nd FFN layer
self.outliers.update(outlier_idx.tolist())
def get_current_outlier_idx(self):
return torch.Tensor(list(self.outliers)).to(torch.int64)
class MatMul8bit(torch.autograd.Function):
class MatMul8bit(torch.autograd.Function):
@staticmethod
def forward(ctx, A, B, out=None, quant_type='vector', precision=[8, 8, 8]):
def forward(ctx, A, B, out=None, quant_type="vector", precision=[8, 8, 8]):
if precision[0] != 8:
with torch.no_grad():
output = torch.matmul(A, B)
else:
if len(B.shape) == 2: dim = 0
else: dim = 1
if len(B.shape) == 2:
dim = 0
else:
dim = 1
qA, SA = F.vectorwise_quant(A, dim=-1, quant_type=quant_type)
qB, SB = F.vectorwise_quant(B, dim=dim, quant_type=quant_type)
iout = F.igemm(qA, qB)
@ -84,21 +91,41 @@ class MatMul8bit(torch.autograd.Function):
else:
if len(B.shape) == 2 and len(A.shape) == 3:
grad_output = grad_output.contiguous()
if not grad_output.is_contiguous(): grad_output.contiguous()
qgrad_output, S1 = F.vectorwise_quant(grad_output.view(-1, grad_output.shape[2]), dim=0, quant_type=quant_type)
if not A.is_contiguous(): A = A.contiguous()
qA, S2 = F.vectorwise_quant(A.view(-1, A.shape[2]), dim=0, quant_type=quant_type)
if not grad_output.is_contiguous():
grad_output.contiguous()
qgrad_output, S1 = F.vectorwise_quant(
grad_output.view(-1, grad_output.shape[2]),
dim=0,
quant_type=quant_type,
)
if not A.is_contiguous():
A = A.contiguous()
qA, S2 = F.vectorwise_quant(
A.view(-1, A.shape[2]), dim=0, quant_type=quant_type
)
igrad_B = F.igemm(qA.t(), qgrad_output)
grad_B = F.vectorwise_mm_dequant(igrad_B, S2.t(), S1, grad_output.dtype, quant_type)
grad_B = F.vectorwise_mm_dequant(
igrad_B, S2.t(), S1, grad_output.dtype, quant_type
)
else:
qgrad_output, S1 = F.vectorwise_quant(grad_output, dim=dims, quant_type=quant_type)
qgrad_output, S1 = F.vectorwise_quant(
grad_output, dim=dims, quant_type=quant_type
)
qA, S2 = F.vectorwise_quant(A, dim=dims, quant_type=quant_type)
igrad_B = F.igemm(qA.permute(permute_dim), qgrad_output)
grad_B = F.vectorwise_mm_dequant(igrad_B, S2.permute(permute_dim), S1, grad_output.dtype, quant_type)
grad_B = F.vectorwise_mm_dequant(
igrad_B,
S2.permute(permute_dim),
S1,
grad_output.dtype,
quant_type,
)
if A.requires_grad:
if len(grad_output.shape) == 3: dims = [2]
else: dims = [1]
if len(grad_output.shape) == 3:
dims = [2]
else:
dims = [1]
if len(B.shape) == 3:
# bio -> boi
@ -113,10 +140,14 @@ class MatMul8bit(torch.autograd.Function):
with torch.no_grad():
grad_A = torch.matmul(grad_output, B.permute(permute_dim))
else:
qgrad_output, S1 = F.vectorwise_quant(grad_output, dim=dims, quant_type=quant_type)
qgrad_output, S1 = F.vectorwise_quant(
grad_output, dim=dims, quant_type=quant_type
)
qB, S3 = F.vectorwise_quant(B, dim=dim_B, quant_type=quant_type)
igrad_A = F.igemm(qgrad_output, qB.permute(permute_dim))
grad_A = F.vectorwise_mm_dequant(igrad_A, S1, S3.permute(permute_dim), grad_output.dtype, quant_type)
grad_A = F.vectorwise_mm_dequant(
igrad_A, S1, S3.permute(permute_dim), grad_output.dtype, quant_type
)
return grad_A, grad_B, None, None, None
@ -125,6 +156,7 @@ mm_cublas = MatMul8bit.apply
bmm_cublas = MatMul8bit.apply
matmul_cublas = MatMul8bit.apply
@dataclass
class MatmulLtState:
CB = None
@ -159,7 +191,6 @@ class MatmulLtState:
class MatMul8bitLt(torch.autograd.Function):
@staticmethod
def forward(ctx, A, B, out=None, state=MatmulLtState()):
# 1. Quantize A
@ -171,11 +202,15 @@ class MatMul8bitLt(torch.autograd.Function):
requires_gradB = B.requires_grad
formatB = state.formatB
input_shape = A.shape
if state.outlier_pool is None: state.outlier_pool = GlobalOutlierPooler.get_instance()
assert A.dtype == torch.float16, f'The input data type needs to be fp16 but {A.dtype} was found!'
if state.outlier_pool is None:
state.outlier_pool = GlobalOutlierPooler.get_instance()
assert (
A.dtype == torch.float16
), f"The input data type needs to be fp16 but {A.dtype} was found!"
# 1. Quantize A
if len(A.shape) == 3: A = A.view(-1, A.shape[-1]).contiguous()
if len(A.shape) == 3:
A = A.view(-1, A.shape[-1]).contiguous()
CA, CAt, SCA, SCAt, coo_tensorA = F.double_quant(A, threshold=state.threshold)
if state.threshold > 0.0 and coo_tensorA is not None:
@ -191,8 +226,8 @@ class MatMul8bitLt(torch.autograd.Function):
# B in in 8-bit row-major, we can transform it back to 16-bit to extract outlier dimensions
# we also need to convert it to the turing/ampere format
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
#state.B = (state.CB.float()*(state.SCB.view(-1, 1)/127)).half()
#if state.threshold > 0.0 and coo_tensorA is not None and state.idx is None and state.CB is not None:
# state.B = (state.CB.float()*(state.SCB.view(-1, 1)/127)).half()
# if state.threshold > 0.0 and coo_tensorA is not None and state.idx is None and state.CB is not None:
# # generate outlier index and subB
# outlier_idx = torch.unique(coo_tensorA.colidx).long()
# state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
@ -203,24 +238,24 @@ class MatMul8bitLt(torch.autograd.Function):
# state.idx = outlier_idx
# state.subB = (state.CB[:, state.idx].float().t().contiguous()*(state.SCB/127)).half()
#if state.idx is not None:
# if state.idx is not None:
# # extract outliers
# CA[:, state.idx] = 0
# CAt[:, state.idx] = 0
# subA = A[:, state.idx]
#else:
# else:
# subA = None
else:
if not state.has_fp16_weights and state.CxB is None:
state.CxB, state.SB = F.transform(state.CB, to_order=formatB)
subA = None
# 2. Quantize B
if state.has_fp16_weights:
has_grad = (True if (getattr(B, 'grad', None) is not None) else False)
has_grad = True if (getattr(B, "grad", None) is not None) else False
is_transposed = not B.is_contiguous() and B.shape[0] == B.stride(1)
if is_transposed: B = B.contiguous()
if is_transposed:
B = B.contiguous()
if (state.is_training and not has_grad) or state.CxB is None:
state.reset_grads()
@ -234,14 +269,16 @@ class MatMul8bitLt(torch.autograd.Function):
outlier_idx = torch.unique(coo_tensorA.colidx)
state.idx = outlier_idx
#state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
#if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
# state.outlier_pool.add_outliers(outlier_idx, A.shape[-1])
# if state.use_pool and state.outlier_pool.model_dim == A.shape[-1]:
# # do not use pool for 2nd FFN layer
# state.idx = state.outlier_pool.get_current_outlier_idx().to(A.device)
#else:
# else:
# state.idx = outlier_idx
outliers = F.extract_outliers(state.CxB, state.SB, state.idx.int())
state.subB = (outliers*state.SCB.view(-1, 1)/127.0).t().contiguous().half()
state.subB = (
(outliers * state.SCB.view(-1, 1) / 127.0).t().contiguous().half()
)
CA[:, state.idx.long()] = 0
CAt[:, state.idx.long()] = 0
subA = A[:, state.idx.long()]
@ -254,7 +291,7 @@ class MatMul8bitLt(torch.autograd.Function):
output_shape = (input_shape[0], shapeB[0])
# 3. Matmul
C32A, SA = F.transform(CA, 'col32')
C32A, SA = F.transform(CA, "col32")
out32, Sout32 = F.igemmlt(C32A, state.CxB, SA, state.SB)
output = F.mm_dequant(out32, Sout32, SCA, state.SCB)
@ -277,7 +314,7 @@ class MatMul8bitLt(torch.autograd.Function):
ctx.tensor_states = (None, None)
ctx.save_for_backward(None, None)
#clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
# clone_func = torch.clone if len(output_shape) == 3 else lambda x : x
clone_func = torch.clone
return clone_func(output.view(output_shape))
@ -288,7 +325,7 @@ class MatMul8bitLt(torch.autograd.Function):
SCAt, idx = ctx.tensor_states
formatB = ctx.formatB
state = ctx.state
assert state.has_fp16_weights, 'Backprop only supported for fp16 weights.'
assert state.has_fp16_weights, "Backprop only supported for fp16 weights."
if len(grad_output.shape) == 3:
grad_output = grad_output.view(-1, grad_output.shape[-1]).contiguous()
@ -298,18 +335,22 @@ class MatMul8bitLt(torch.autograd.Function):
Cgrad, Cgradt, SCgrad, SCgradt, coo_tensor = F.double_quant(grad_output)
if req_gradB:
CxAt, SAt = F.transform(CAt, formatB, transpose=True)
C32grad, Sgrad = F.transform(Cgradt, 'col32', transpose=True)
C32grad, Sgrad = F.transform(Cgradt, "col32", transpose=True)
gradB32, SgradB32 = F.igemmlt(C32grad, CxAt, Sgrad, SAt)
grad_B = F.mm_dequant(gradB32, SgradB32, SCgradt, SCAt)
if state.threshold > 0.0 and subA is not None:
grad_B[:, idx] += torch.matmul(grad_output.t(), subA)
if req_gradA:
C32grad, Sgrad = F.transform(Cgrad, 'col32')
C32grad, Sgrad = F.transform(Cgrad, "col32")
if state.CxBt is None:
state.CxBt, state.SBt = F.transform(state.CBt, to_order=formatB, transpose=True)
state.CxBt, state.SBt = F.transform(
state.CBt, to_order=formatB, transpose=True
)
gradA32, SgradA32 = F.igemmlt(C32grad, state.CxBt, Sgrad, state.SBt)
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(ctx.grad_shape)
grad_A = F.mm_dequant(gradA32, SgradA32, SCgrad, state.SCBt).view(
ctx.grad_shape
)
return grad_A, grad_B, None, None, None, None, None
@ -317,9 +358,10 @@ class MatMul8bitLt(torch.autograd.Function):
matmul = MatMul8bitLt.apply
def matmul(A : tensor, B : tensor, out : tensor=None, state : MatmulLtState = None, threshold=0.0):
def matmul(
A: tensor, B: tensor, out: tensor = None, state: MatmulLtState = None, threshold=0.0
):
state = state or MatmulLtState()
if threshold > 0.0:
state.threshold = threshold
return MatMul8bitLt.apply(A, B, out, state)

View File

@ -1,6 +1,7 @@
import ctypes as ct
import os
from warnings import warn
from bitsandbytes.cuda_setup import evaluate_cuda_setup
@ -8,17 +9,21 @@ class CUDALibrary_Singleton(object):
_instance = None
def __init__(self):
raise RuntimeError('Call get_instance() instead')
raise RuntimeError("Call get_instance() instead")
def initialize(self):
self.context = {}
binary_name = evaluate_cuda_setup()
if not os.path.exists(os.path.dirname(__file__) + f'/{binary_name}'):
print(f'TODO: compile library for specific version: {binary_name}')
print('defaulting to libbitsandbytes.so')
self.lib = ct.cdll.LoadLibrary(os.path.dirname(__file__) + '/libbitsandbytes.so')
if not os.path.exists(os.path.dirname(__file__) + f"/{binary_name}"):
print(f"TODO: compile library for specific version: {binary_name}")
print("defaulting to libbitsandbytes.so")
self.lib = ct.cdll.LoadLibrary(
os.path.dirname(__file__) + "/libbitsandbytes.so"
)
else:
self.lib = ct.cdll.LoadLibrary(os.path.dirname(__file__) + f'/{binary_name}')
self.lib = ct.cdll.LoadLibrary(
os.path.dirname(__file__) + f"/{binary_name}"
)
@classmethod
def get_instance(cls):
@ -35,6 +40,8 @@ try:
lib.get_cusparse.restype = ct.c_void_p
COMPILED_WITH_CUDA = True
except AttributeError:
warn("The installed version of bitsandbytes was compiled without GPU support. "
"8-bit optimizers and GPU quantization are unavailable.")
warn(
"The installed version of bitsandbytes was compiled without GPU support. "
"8-bit optimizers and GPU quantization are unavailable."
)
COMPILED_WITH_CUDA = False

View File

@ -18,31 +18,36 @@ evaluation:
- based on that set the default path
"""
from os import environ as env
from pathlib import Path
from typing import Set, Union
from .utils import warn_of_missing_prerequisite, print_err
import ctypes
import shlex
import subprocess
from os import environ as env
from pathlib import Path
from typing import Set, Union
from .utils import print_err, warn_of_missing_prerequisite
def execute_and_return(strCMD):
proc = subprocess.Popen(shlex.split(strCMD), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
proc = subprocess.Popen(
shlex.split(strCMD), stdout=subprocess.PIPE, stderr=subprocess.PIPE
)
out, err = proc.communicate()
out, err = out.decode("UTF-8").strip(), err.decode("UTF-8").strip()
return out, err
def check_cuda_result(cuda, result_val):
if result_val != 0:
cuda.cuGetErrorString(result_val, ctypes.byref(error_str))
print(f"Count not initialize CUDA - failure!")
raise Exception('CUDA exception!')
raise Exception("CUDA exception!")
return result_val
# taken from https://gist.github.com/f0k/63a664160d016a491b2cbea15913d549
def get_compute_capability():
libnames = ('libcuda.so', 'libcuda.dylib', 'cuda.dll')
libnames = ("libcuda.so", "libcuda.dylib", "cuda.dll")
for libname in libnames:
try:
cuda = ctypes.CDLL(libname)
@ -51,8 +56,7 @@ def get_compute_capability():
else:
break
else:
raise OSError("could not load any of: " + ' '.join(libnames))
raise OSError("could not load any of: " + " ".join(libnames))
nGpus = ctypes.c_int()
cc_major = ctypes.c_int()
@ -69,39 +73,43 @@ def get_compute_capability():
ccs = []
for i in range(nGpus.value):
result = check_cuda_result(cuda, cuda.cuDeviceGet(ctypes.byref(device), i))
result = check_cuda_result(cuda, cuda.cuDeviceComputeCapability(ctypes.byref(cc_major), ctypes.byref(cc_minor), device))
ccs.append(f'{cc_major.value}.{cc_minor.value}')
result = check_cuda_result(
cuda,
cuda.cuDeviceComputeCapability(
ctypes.byref(cc_major), ctypes.byref(cc_minor), device
),
)
ccs.append(f"{cc_major.value}.{cc_minor.value}")
#TODO: handle different compute capabilities; for now, take the max
# TODO: handle different compute capabilities; for now, take the max
ccs.sort()
return ccs[-1]
# return ccs[-1]
return ccs
CUDA_RUNTIME_LIB: str = "libcudart.so"
def tokenize_paths(paths: str) -> Set[Path]:
return {
Path(ld_path) for ld_path in paths.split(':')
if ld_path
}
return {Path(ld_path) for ld_path in paths.split(":") if ld_path}
def get_cuda_runtime_lib_path(
# TODO: replace this with logic for all paths in env vars
LD_LIBRARY_PATH: Union[str, None] = env.get("LD_LIBRARY_PATH")
) -> Union[Path, None]:
""" # TODO: add doc-string
"""
"""# TODO: add doc-string"""
if not LD_LIBRARY_PATH:
warn_of_missing_prerequisite(
'LD_LIBRARY_PATH is completely missing from environment!'
"LD_LIBRARY_PATH is completely missing from environment!"
)
return None
ld_library_paths: Set[Path] = tokenize_paths(LD_LIBRARY_PATH)
non_existent_directories: Set[Path] = {
path for path in ld_library_paths
if not path.exists()
non_existent_directories: Set[Path] = {
path for path in ld_library_paths if not path.exists()
}
if non_existent_directories:
@ -111,7 +119,8 @@ def get_cuda_runtime_lib_path(
)
cuda_runtime_libs: Set[Path] = {
path / CUDA_RUNTIME_LIB for path in ld_library_paths
path / CUDA_RUNTIME_LIB
for path in ld_library_paths
if (path / CUDA_RUNTIME_LIB).is_file()
} - non_existent_directories
@ -126,26 +135,31 @@ def get_cuda_runtime_lib_path(
single_cuda_runtime_lib_dir = next(iter(cuda_runtime_libs))
return single_cuda_runtime_lib_dir
def evaluate_cuda_setup():
cuda_path = get_cuda_runtime_lib_path()
cc = get_compute_capability()
binary_name = 'libbitsandbytes_cpu.so'
binary_name = "libbitsandbytes_cpu.so"
if not (has_gpu := bool(cc)):
print('WARNING: No GPU detected! Check our CUDA paths. Processing to load CPU-only library...')
print(
"WARNING: No GPU detected! Check our CUDA paths. Processing to load CPU-only library..."
)
return binary_name
has_cublaslt = cc in ['7.5', '8.0', '8.6']
has_cublaslt = cc in ["7.5", "8.0", "8.6"]
# TODO:
# TODO:
# (1) Model missing cases (no CUDA installed by CUDA driver (nvidia-smi accessible)
# (2) Multiple CUDA versions installed
cuda_home = str(Path(cuda_path).parent.parent)
ls_output, err = execute_and_return(f'{cuda_home}/bin/nvcc --version')
cuda_version = ls_output.split('\n')[3].split(',')[-1].strip().lower().replace('v', '')
major, minor, revision = cuda_version.split('.')
cuda_version_string = f'{major}{minor}'
ls_output, err = execute_and_return(f"{cuda_home}/bin/nvcc --version")
cuda_version = (
ls_output.split("\n")[3].split(",")[-1].strip().lower().replace("v", "")
)
major, minor, revision = cuda_version.split(".")
cuda_version_string = f"{major}{minor}"
binary_name = f'libbitsandbytes_cuda{cuda_version_string}_{("cublaslt" if has_cublaslt else "")}.so'

View File

@ -1,6 +1,5 @@
import typer
cli = typer.Typer()

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .modules import StableEmbedding, Linear8bit, Linear8bitLt, Int8Params
from .modules import Int8Params, Linear8bit, Linear8bitLt, StableEmbedding

View File

@ -1,39 +1,59 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import (Any, Callable, Dict, Iterator, Mapping, Optional, Set,
Tuple, TypeVar, Union, overload)
import torch
import bitsandbytes as bnb
from typing import Union, Tuple, Any, Callable, Iterator, Set, Optional, overload, TypeVar, Mapping, Dict
from torch import Tensor, device, dtype
from torch import nn
from torch.nn.parameter import Parameter
import torch.nn.functional as F
from torch import Tensor, device, dtype, nn
from torch.nn.parameter import Parameter
import bitsandbytes as bnb
from bitsandbytes.optim import GlobalOptimManager
T = TypeVar('T', bound='torch.nn.Module')
T = TypeVar("T", bound="torch.nn.Module")
class StableEmbedding(torch.nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
sparse: bool = False, _weight: Optional[Tensor] = None) -> None:
super(StableEmbedding, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight)
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
) -> None:
super(StableEmbedding, self).__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
)
self.norm = torch.nn.LayerNorm(embedding_dim)
GlobalOptimManager.get_instance().register_module_override(self, 'weight', {'optim_bits': 32})
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight)
self._fill_padding_idx_with_zero()
''' !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
""" !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
to make the Layer compatible with Pytorch < 1.9.
This means that if this changes in future PyTorch releases this need to change too
which is cumbersome. However, with this we can ensure compatibility with previous
PyTorch releases.
'''
"""
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
@ -41,29 +61,55 @@ class StableEmbedding(torch.nn.Embedding):
def forward(self, input: Tensor) -> Tensor:
emb = F.embedding(
input, self.weight, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse)
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
return self.norm(emb)
class Embedding(torch.nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None,
max_norm: Optional[float] = None, norm_type: float = 2., scale_grad_by_freq: bool = False,
sparse: bool = False, _weight: Optional[Tensor] = None) -> None:
super(Embedding, self).__init__(num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight)
GlobalOptimManager.get_instance().register_module_override(self, 'weight', {'optim_bits': 32})
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
padding_idx: Optional[int] = None,
max_norm: Optional[float] = None,
norm_type: float = 2.0,
scale_grad_by_freq: bool = False,
sparse: bool = False,
_weight: Optional[Tensor] = None,
) -> None:
super(Embedding, self).__init__(
num_embeddings,
embedding_dim,
padding_idx,
max_norm,
norm_type,
scale_grad_by_freq,
sparse,
_weight,
)
GlobalOptimManager.get_instance().register_module_override(
self, "weight", {"optim_bits": 32}
)
def reset_parameters(self) -> None:
torch.nn.init.xavier_uniform_(self.weight)
self._fill_padding_idx_with_zero()
''' !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
""" !!! This is a redefinition of _fill_padding_idx_with_zero in torch.nn.Embedding
to make the Layer compatible with Pytorch < 1.9.
This means that if this changes in future PyTorch releases this need to change too
which is cumbersome. However, with this we can ensure compatibility with previous
PyTorch releases.
'''
"""
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
@ -71,13 +117,22 @@ class Embedding(torch.nn.Embedding):
def forward(self, input: Tensor) -> Tensor:
emb = F.embedding(
input, self.weight, self.padding_idx, self.max_norm,
self.norm_type, self.scale_grad_by_freq, self.sparse)
input,
self.weight,
self.padding_idx,
self.max_norm,
self.norm_type,
self.scale_grad_by_freq,
self.sparse,
)
return emb
class Int8Params(torch.nn.Parameter):
def __new__(cls, data=None, requires_grad=True, has_fp16_weights=False, CB=None, SCB=None):
def __new__(
cls, data=None, requires_grad=True, has_fp16_weights=False, CB=None, SCB=None
):
cls.has_fp16_weights = has_fp16_weights
cls.CB = None
cls.SCB = None
@ -96,14 +151,18 @@ class Int8Params(torch.nn.Parameter):
del CBt
del SCBt
self.data = CB
setattr(self, 'CB', CB)
setattr(self, 'SCB', SCB)
setattr(self, "CB", CB)
setattr(self, "SCB", SCB)
return self
@overload
def to(self: T, device: Optional[Union[int, device]] = ..., dtype: Optional[Union[dtype, str]] = ...,
non_blocking: bool = ...) -> T:
def to(
self: T,
device: Optional[Union[int, device]] = ...,
dtype: Optional[Union[dtype, str]] = ...,
non_blocking: bool = ...,
) -> T:
...
@overload
@ -115,23 +174,41 @@ class Int8Params(torch.nn.Parameter):
...
def to(self, *args, **kwargs):
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs)
device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(
*args, **kwargs
)
if device is not None and device.type == 'cuda' and self.data.device.type == 'cpu': return self.cuda(device)
if (
device is not None
and device.type == "cuda"
and self.data.device.type == "cpu"
):
return self.cuda(device)
else:
new_param = Int8Params(super().to(device=device, dtype=dtype, non_blocking=non_blocking), requires_grad=self.requires_grad, has_fp16_weights=self.has_fp16_weights)
new_param = Int8Params(
super().to(device=device, dtype=dtype, non_blocking=non_blocking),
requires_grad=self.requires_grad,
has_fp16_weights=self.has_fp16_weights,
)
new_param.CB = self.CB
new_param.SCB = self.SCB
return new_param
class Linear8bitLt(nn.Linear):
def __init__(self, input_features, output_features, bias=True, has_fp16_weights=True, threshold=0.0, index=None):
def __init__(
self,
input_features,
output_features,
bias=True,
has_fp16_weights=True,
threshold=0.0,
index=None,
):
super(Linear8bitLt, self).__init__(input_features, output_features, bias)
self.state = bnb.MatmulLtState()
self.index=index
self.index = index
self.state.threshold = threshold
self.state.has_fp16_weights = has_fp16_weights
@ -149,9 +226,10 @@ class Linear8bitLt(nn.Linear):
def forward(self, x):
self.state.is_training = self.training
if self.weight.CB is not None: self.init_8bit_state()
#assert not self.state.has_fp16_weights
#if not self.state.has_fp16_weights: assert self.state.CB is not None or self.state.CxB is not None
if self.weight.CB is not None:
self.init_8bit_state()
# assert not self.state.has_fp16_weights
# if not self.state.has_fp16_weights: assert self.state.CB is not None or self.state.CxB is not None
out = bnb.matmul(x, self.weight, state=self.state)
@ -166,8 +244,18 @@ class Linear8bitLt(nn.Linear):
return out
class Linear8bit(nn.Linear):
def __init__(self, input_features, output_features, bias=True, quant_type='vector', index=None, args=None, sparse_decomp=False):
def __init__(
self,
input_features,
output_features,
bias=True,
quant_type="vector",
index=None,
args=None,
sparse_decomp=False,
):
super(Linear8bit, self).__init__(input_features, output_features, bias)
self.quant_type = quant_type
self.index = index
@ -178,15 +266,24 @@ class Linear8bit(nn.Linear):
self.iter += 1
if self.iter % self.args.clip_freq == 0:
with torch.no_grad():
maxval, maxidx = torch.topk(torch.abs(self.weight.flatten()), k=self.args.clip_idx)
maxval, maxidx = torch.topk(
torch.abs(self.weight.flatten()), k=self.args.clip_idx
)
if not dist.is_initialized() or dist.get_rank() == 0:
print('clip', maxval[-1].item())
print("clip", maxval[-1].item())
self.weight.clip_(-maxval[-1], maxval[-1])
if self.args is not None:
out = bnb.nn.functional.sparse_decomposed_linear8bit(x, self.weight, self.bias, qval=self.args.sparse_decomp_val, quant_type=self.args.quant_type)
out = bnb.nn.functional.sparse_decomposed_linear8bit(
x,
self.weight,
self.bias,
qval=self.args.sparse_decomp_val,
quant_type=self.args.quant_type,
)
else:
out = bnb.nn.functional.linear8bit(x, self.weight, self.bias, quant_type=self.args.quant_type)
out = bnb.nn.functional.linear8bit(
x, self.weight, self.bias, quant_type=self.args.quant_type
)
return out

View File

@ -1,6 +1,6 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from bitsandbytes.cextension import COMPILED_WITH_CUDA

View File

@ -1,12 +1,25 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from bitsandbytes.optim.optimizer import Optimizer1State
class Adagrad(Optimizer1State):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
def __init__(
self,
params,
lr=1e-2,
lr_decay=0,
weight_decay=0,
initial_accumulator_value=0,
eps=1e-10,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
@ -14,15 +27,39 @@ class Adagrad(Optimizer1State):
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError('Initial accumulator value != 0.0 not supported!')
raise ValueError("Initial accumulator value != 0.0 not supported!")
if lr_decay != 0.0:
raise ValueError('Lr Decay != 0.0 not supported!')
super(Adagrad, self).__init__('adagrad', params, lr, (0.0, 0.0), eps,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
raise ValueError("Lr Decay != 0.0 not supported!")
super(Adagrad, self).__init__(
"adagrad",
params,
lr,
(0.0, 0.0),
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class Adagrad8bit(Optimizer1State):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
optim_bits=8, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
def __init__(
self,
params,
lr=1e-2,
lr_decay=0,
weight_decay=0,
initial_accumulator_value=0,
eps=1e-10,
optim_bits=8,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
@ -30,16 +67,40 @@ class Adagrad8bit(Optimizer1State):
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError('Initial accumulator value != 0.0 not supported!')
raise ValueError("Initial accumulator value != 0.0 not supported!")
if lr_decay != 0.0:
raise ValueError('Lr Decay != 0.0 not supported!')
raise ValueError("Lr Decay != 0.0 not supported!")
assert block_wise
super(Adagrad8bit, self).__init__('adagrad', params, lr, (0.0, 0.0), eps,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
super(Adagrad8bit, self).__init__(
"adagrad",
params,
lr,
(0.0, 0.0),
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class Adagrad32bit(Optimizer1State):
def __init__(self, params, lr=1e-2, lr_decay=0, weight_decay=0, initial_accumulator_value=0, eps=1e-10,
optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True):
def __init__(
self,
params,
lr=1e-2,
lr_decay=0,
weight_decay=0,
initial_accumulator_value=0,
eps=1e-10,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= weight_decay:
@ -47,8 +108,19 @@ class Adagrad32bit(Optimizer1State):
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if initial_accumulator_value != 0.0:
raise ValueError('Initial accumulator value != 0.0 not supported!')
raise ValueError("Initial accumulator value != 0.0 not supported!")
if lr_decay != 0.0:
raise ValueError('Lr Decay != 0.0 not supported!')
super(Adagrad32bit, self).__init__('adagrad', params, lr, (0.0, 0.0), eps,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
raise ValueError("Lr Decay != 0.0 not supported!")
super(Adagrad32bit, self).__init__(
"adagrad",
params,
lr,
(0.0, 0.0),
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)

View File

@ -1,6 +1,6 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
@ -8,29 +8,97 @@ import os
import torch
import torch.distributed as dist
from bitsandbytes.optim.optimizer import Optimizer2State
import bitsandbytes.functional as F
from bitsandbytes.optim.optimizer import Optimizer2State
class Adam(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(Adam, self).__init__('adam', params, lr, betas, eps,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
super(Adam, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class Adam8bit(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(Adam8bit, self).__init__('adam', params, lr, betas, eps,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
super(Adam8bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class Adam32bit(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(Adam32bit, self).__init__('adam', params, lr, betas, eps,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
super(Adam32bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class AnalysisAdam(torch.optim.Optimizer):
@ -68,8 +136,8 @@ class AnalysisAdam(torch.optim.Optimizer):
eps=1e-8,
weight_decay=0,
amsgrad=False,
bnb_analysis='dynamic-blockwise',
savedir=None
bnb_analysis="dynamic-blockwise",
savedir=None,
):
defaults = dict(
lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad
@ -124,9 +192,13 @@ class AnalysisAdam(torch.optim.Optimizer):
state["exp_avg"] = torch.zeros_like(p_data_fp32)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p_data_fp32)
state['abserrors'] = torch.zeros((256, 256), device=p_data_fp32.device)
state['relerrors'] = torch.zeros((256, 256), device=p_data_fp32.device)
state['counts'] = torch.zeros((256, 256), device=p_data_fp32.device)
state["abserrors"] = torch.zeros(
(256, 256), device=p_data_fp32.device
)
state["relerrors"] = torch.zeros(
(256, 256), device=p_data_fp32.device
)
state["counts"] = torch.zeros((256, 256), device=p_data_fp32.device)
if amsgrad:
# Maintains max of all exp. moving avg. of sq. grad. values
state["max_exp_avg_sq"] = torch.zeros_like(p_data_fp32)
@ -143,9 +215,9 @@ class AnalysisAdam(torch.optim.Optimizer):
bias_correction1 = 1 - beta1 ** state["step"]
bias_correction2 = 1 - beta2 ** state["step"]
step_size = group["lr"] * math.sqrt(bias_correction2) / bias_correction1
e = state['abserrors']
rele = state['relerrors']
counts = state['counts']
e = state["abserrors"]
rele = state["relerrors"]
counts = state["counts"]
if group["weight_decay"] != 0:
p_data_fp32.add_(
@ -156,77 +228,84 @@ class AnalysisAdam(torch.optim.Optimizer):
if amsgrad:
max_exp_avg_sq = state["max_exp_avg_sq"]
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
denom = exp_avg_sq.sqrt().add_(group["eps"])
update_fp32 = exp_avg/denom
update_fp32 = exp_avg / denom
if p_data_fp32.numel() <= 8192 or p_data_fp32.numel() > 50000*1000:
if p_data_fp32.numel() <= 8192 or p_data_fp32.numel() > 50000 * 1000:
# embedding layer or too small
p_data_fp32 += -step_size*update_fp32
p_data_fp32 += -step_size * update_fp32
else:
if self.analysis == 'dynamic-blockwise':
if self.analysis == "dynamic-blockwise":
code1 = F.create_dynamic_map(signed=True).to(p.device)
code2 = F.create_dynamic_map(signed=False).to(p.device)
C1, S1 = F.quantize_blockwise(exp_avg, code=code1)
state1 = F.dequantize_blockwise(C1, S1)
C2, S2 = F.quantize_blockwise(exp_avg_sq, code=code2)
state2 = F.dequantize_blockwise(C2, S2)
elif self.analysis == 'dynamic':
elif self.analysis == "dynamic":
code1 = F.create_dynamic_map(signed=True).to(p.device)
code2 = F.create_dynamic_map(signed=False).to(p.device)
C1, S1 = F.quantize(exp_avg, code=code1)
state1 = F.dequantize(C1, S1)
C2, S2 = F.quantize(exp_avg_sq, code=code2)
state2 = F.dequantize(C2, S2)
elif self.analysis == 'linear':
elif self.analysis == "linear":
code1 = F.create_linear_map(signed=True).to(p.device)
code2 = F.create_linear_map(signed=False).to(p.device)
C1, S1 = F.quantize(exp_avg, code=code1)
state1 = F.dequantize(C1, S1)
C2, S2 = F.quantize(exp_avg_sq, code=code2)
state2 = F.dequantize(C2, S2)
elif self.analysis == 'quantile':
elif self.analysis == "quantile":
code1 = F.estimate_quantiles(exp_avg)
code2 = F.estimate_quantiles(exp_avg_sq)
C1 = F.quantize_no_absmax(exp_avg, code=code1)
state1 = F.dequantize_no_absmax(C1, code1)
C2 = F.quantize_no_absmax(exp_avg_sq, code=code2)
state2 = F.dequantize_no_absmax(C2, code2)
elif self.analysis == 'my-quantization-routine':
elif self.analysis == "my-quantization-routine":
pass
# 1. get code
# 2. quantize
# 3. dequantize
# Error will be calculated automatically!
else:
raise ValueError(f'Invalid analysis value: {self.analysis}!')
raise ValueError(f"Invalid analysis value: {self.analysis}!")
denom = state2.sqrt().add_(group["eps"])
update_8bit = state1/denom
update_8bit = state1 / denom
abserr = torch.abs(update_8bit-update_fp32)
relerr = abserr/torch.abs(update_fp32+1e-6)
abserr = torch.abs(update_8bit - update_fp32)
relerr = abserr / torch.abs(update_fp32 + 1e-6)
C1, C2 = C1.int(), C2.int()
F.histogram_scatter_add_2d(e, C1.int(), C2.int(), abserr)
F.histogram_scatter_add_2d(rele, C1.int(), C2.int(), relerr)
F.histogram_scatter_add_2d(counts, C1.int(), C2.int(), torch.ones_like(abserr))
p_data_fp32 += -step_size*update_fp32
F.histogram_scatter_add_2d(
counts, C1.int(), C2.int(), torch.ones_like(abserr)
)
p_data_fp32 += -step_size * update_fp32
if not dist.is_initialized() or dist.get_rank() == 0:
if self.savedir != '' and state['step'] % 100 == 0:
if not os.path.exists(self.savedir): os.makedirs(self.savedir)
shapestr = '_'.join([str(dim) for dim in p_data_fp32.shape])
pathe = os.path.join(self.savedir, f'{p_id}_{shapestr}_abserr.pkl')
pathrele = os.path.join(self.savedir, f'{p_id}_{shapestr}_relerr.pkl')
pathcounts = os.path.join(self.savedir, f'{p_id}_{shapestr}_counts.pkl')
if self.savedir != "" and state["step"] % 100 == 0:
if not os.path.exists(self.savedir):
os.makedirs(self.savedir)
shapestr = "_".join([str(dim) for dim in p_data_fp32.shape])
pathe = os.path.join(
self.savedir, f"{p_id}_{shapestr}_abserr.pkl"
)
pathrele = os.path.join(
self.savedir, f"{p_id}_{shapestr}_relerr.pkl"
)
pathcounts = os.path.join(
self.savedir, f"{p_id}_{shapestr}_counts.pkl"
)
torch.save(e, pathe)
torch.save(rele, pathrele)
torch.save(counts, pathcounts)
@ -234,6 +313,4 @@ class AnalysisAdam(torch.optim.Optimizer):
if p.data.dtype in {torch.float16, torch.bfloat16}:
p.data.copy_(p_data_fp32)
return loss

View File

@ -1,27 +1,93 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from bitsandbytes.optim.optimizer import Optimizer2State
class AdamW(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=1e-2, amsgrad=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(AdamW, self).__init__('adam', params, lr, betas, eps,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
super(AdamW, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class AdamW8bit(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=1e-2, amsgrad=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(AdamW8bit, self).__init__('adam', params, lr, betas, eps,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
super(AdamW8bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class AdamW32bit(Optimizer2State):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=1e-2, amsgrad=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
super(AdamW32bit, self).__init__('adam', params, lr, betas, eps,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
def __init__(
self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=1e-2,
amsgrad=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
super(AdamW32bit, self).__init__(
"adam",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)

View File

@ -1,28 +1,105 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from bitsandbytes.optim.optimizer import Optimizer2State
class LAMB(Optimizer2State):
def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False, adam_w_mode=True, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0):
super(LAMB, self).__init__('lamb', params, lr, betas, eps,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise, max_unorm=1.0)
def __init__(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
adam_w_mode=True,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=False,
max_unorm=1.0,
):
super(LAMB, self).__init__(
"lamb",
params,
lr,
betas,
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
max_unorm=1.0,
)
class LAMB8bit(Optimizer2State):
def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False, adam_w_mode=True, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0):
super(LAMB8bit, self).__init__('lamb', params, lr, betas, eps,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise, max_unorm=1.0)
def __init__(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
adam_w_mode=True,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=False,
max_unorm=1.0,
):
super(LAMB8bit, self).__init__(
"lamb",
params,
lr,
betas,
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
max_unorm=1.0,
)
class LAMB32bit(Optimizer2State):
def __init__(self, params, lr=1e-3, bias_correction=True, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, amsgrad=False, adam_w_mode=True, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=False, max_unorm=1.0):
super(LAMB32bit, self).__init__('lamb', params, lr, betas, eps,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise, max_unorm=1.0)
def __init__(
self,
params,
lr=1e-3,
bias_correction=True,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0,
amsgrad=False,
adam_w_mode=True,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=False,
max_unorm=1.0,
):
super(LAMB32bit, self).__init__(
"lamb",
params,
lr,
betas,
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
max_unorm=1.0,
)

View File

@ -1,43 +1,121 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch.optim import Optimizer
from bitsandbytes.optim.optimizer import Optimizer1State
class LARS(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(f'LARS without momentum is not supported!')
super(LARS, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
raise NotImplementedError(f"LARS without momentum is not supported!")
super(LARS, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
class LARS8bit(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(f'LARS without momentum is not supported!')
super(LARS8bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
weight_decay, 8, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
raise NotImplementedError(f"LARS without momentum is not supported!")
super(LARS8bit, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
class LARS32bit(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, max_unorm=0.02):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
max_unorm=0.02,
):
if momentum == 0:
raise NotImplementedError(f'LARS without momentum is not supported!')
super(LARS32bit, self).__init__('lars', params, lr, (momentum, dampening), 0.0,
weight_decay, 32, args, min_8bit_size, percentile_clipping, max_unorm=max_unorm, block_wise=False)
raise NotImplementedError(f"LARS without momentum is not supported!")
super(LARS32bit, self).__init__(
"lars",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
max_unorm=max_unorm,
block_wise=False,
)
class PytorchLARS(Optimizer):
def __init__(self, params, lr=0.01, momentum=0, dampening=0,
weight_decay=0, nesterov=False, max_unorm=0.02):
def __init__(
self,
params,
lr=0.01,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
max_unorm=0.02,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
@ -45,8 +123,14 @@ class PytorchLARS(Optimizer):
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov, max_unorm=max_unorm)
defaults = dict(
lr=lr,
momentum=momentum,
dampening=dampening,
weight_decay=weight_decay,
nesterov=nesterov,
max_unorm=max_unorm,
)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super(PytorchLARS, self).__init__(params, defaults)
@ -54,7 +138,7 @@ class PytorchLARS(Optimizer):
def __setstate__(self, state):
super(PytorchLARS, self).__setstate__(state)
for group in self.param_groups:
group.setdefault('nesterov', False)
group.setdefault("nesterov", False)
@torch.no_grad()
def step(self, closure=None):
@ -73,15 +157,16 @@ class PytorchLARS(Optimizer):
params_with_grad = []
d_p_list = []
momentum_buffer_list = []
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
max_unorm = group['max_unorm']
lr = group['lr']
weight_decay = group["weight_decay"]
momentum = group["momentum"]
dampening = group["dampening"]
nesterov = group["nesterov"]
max_unorm = group["max_unorm"]
lr = group["lr"]
for p in group['params']:
if p.grad is None: continue
for p in group["params"]:
if p.grad is None:
continue
state = self.state[p]
d_p = p.grad
@ -89,16 +174,16 @@ class PytorchLARS(Optimizer):
d_p = d_p.add(param, alpha=weight_decay)
if momentum != 0:
buf = state.get('momentum_buffer', None)
buf = state.get("momentum_buffer", None)
if buf is None:
buf = torch.clone(d_p).detach()
state['momentum_buffer']= buf
state["momentum_buffer"] = buf
else:
buf.mul_(momentum).add_(d_p, alpha=1 - dampening)
if nesterov:
update = d_p + buf*momentum
update = d_p + buf * momentum
else:
update = buf
@ -107,9 +192,9 @@ class PytorchLARS(Optimizer):
assert p.dtype == torch.float32
pnorm = torch.norm(p.detach())
unorm = torch.norm(update)
if unorm > max_unorm*pnorm:
update_scale = max_unorm*pnorm/unorm
if unorm > max_unorm * pnorm:
update_scale = max_unorm * pnorm / unorm
p.add_(update, alpha=-lr*update_scale)
p.add_(update, alpha=-lr * update_scale)
return loss

View File

@ -1,13 +1,16 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
import bitsandbytes.functional as F
from collections import abc as container_abcs
from collections import defaultdict
from copy import deepcopy
from itertools import chain
from collections import defaultdict, abc as container_abcs
import torch
import bitsandbytes.functional as F
class MockArgs(object):
def __init__(self, initial_data):
@ -19,7 +22,7 @@ class GlobalOptimManager(object):
_instance = None
def __init__(self):
raise RuntimeError('Call get_instance() instead')
raise RuntimeError("Call get_instance() instead")
def initialize(self):
self.pid2config = {}
@ -38,15 +41,15 @@ class GlobalOptimManager(object):
def register_parameters(self, params):
param_groups = list(params)
if not isinstance(param_groups[0], dict):
param_groups = [{'params': param_groups}]
param_groups = [{"params": param_groups}]
for group_index, group in enumerate(param_groups):
for p_index, p in enumerate(group['params']):
for p_index, p in enumerate(group["params"]):
if id(p) in self.pid2config:
self.index2config[(group_index, p_index)] = self.pid2config[id(p)]
def override_config(self, parameters, key=None, value=None, key_value_dict=None):
'''
"""
Overrides initial optimizer config for specific parameters.
The key-values of the optimizer config for the input parameters are overidden
@ -63,7 +66,7 @@ class GlobalOptimManager(object):
The value for the hyperparamters.
key_value_dict : dict
A dictionary with multiple key-values to override.
'''
"""
self.uses_config_override = True
if isinstance(parameters, torch.nn.Parameter):
parameters = [parameters]
@ -75,16 +78,16 @@ class GlobalOptimManager(object):
if key_value_dict is not None:
for p in parameters:
if id(p) in self.pid2config:self.pid2config[id(p)].update(key_value_dict)
else: self.pid2config[id(p)] = key_value_dict
if id(p) in self.pid2config:
self.pid2config[id(p)].update(key_value_dict)
else:
self.pid2config[id(p)] = key_value_dict
def register_module_override(self, module, param_name, config):
self.module_weight_config_triple.append((module, param_name, config))
class Optimizer8bit(torch.optim.Optimizer):
def __init__(self, params, defaults, optim_bits=32):
super(Optimizer8bit, self).__init__(params, defaults)
self.initialized = False
@ -92,23 +95,32 @@ class Optimizer8bit(torch.optim.Optimizer):
self.mng = GlobalOptimManager.get_instance()
self.non_castable_tensor_keys = set(
['qmap1', 'qmap2',
'max1', 'max2',
'new_max1', 'new_max2',
'state1', 'state2',
'gnorm_vec', 'absmax1', 'absmax2',
'unorm_vec'])
[
"qmap1",
"qmap2",
"max1",
"max2",
"new_max1",
"new_max2",
"state1",
"state2",
"gnorm_vec",
"absmax1",
"absmax2",
"unorm_vec",
]
)
if optim_bits == 8: self.fill_qmap()
if optim_bits == 8:
self.fill_qmap()
def fill_qmap(self):
self.name2qmap['dynamic'] = F.create_dynamic_map(signed=True)
self.name2qmap['udynamic'] = F.create_dynamic_map(signed=False)
self.name2qmap["dynamic"] = F.create_dynamic_map(signed=True)
self.name2qmap["udynamic"] = F.create_dynamic_map(signed=False)
def __setstate__(self, state):
super(Optimizer8bit, self).__setstate__(state)
def load_state_dict(self, state_dict):
r"""Loads the optimizer state.
@ -120,21 +132,28 @@ class Optimizer8bit(torch.optim.Optimizer):
state_dict = deepcopy(state_dict)
# Validate the state_dict
groups = self.param_groups
saved_groups = state_dict['param_groups']
saved_groups = state_dict["param_groups"]
if len(groups) != len(saved_groups):
raise ValueError("loaded state dict has a different number of "
"parameter groups")
param_lens = (len(g['params']) for g in groups)
saved_lens = (len(g['params']) for g in saved_groups)
raise ValueError(
"loaded state dict has a different number of " "parameter groups"
)
param_lens = (len(g["params"]) for g in groups)
saved_lens = (len(g["params"]) for g in saved_groups)
if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)):
raise ValueError("loaded state dict contains a parameter group "
"that doesn't match the size of optimizer's group")
raise ValueError(
"loaded state dict contains a parameter group "
"that doesn't match the size of optimizer's group"
)
# Update the state
id_map = {old_id: p for old_id, p in
zip(chain.from_iterable((g['params'] for g in saved_groups)),
chain.from_iterable((g['params'] for g in groups)))}
id_map = {
old_id: p
for old_id, p in zip(
chain.from_iterable((g["params"] for g in saved_groups)),
chain.from_iterable((g["params"] for g in groups)),
)
}
def cast(param, value):
r"""Make a deep copy of value, casting all tensors to device of param."""
@ -161,7 +180,7 @@ class Optimizer8bit(torch.optim.Optimizer):
# State that is not assigned to params is copied as is (needed for
# backward compatibility).
state = defaultdict(dict)
for k, v in state_dict['state'].items():
for k, v in state_dict["state"].items():
if k in id_map:
param = id_map[k]
state[param] = cast(param, v)
@ -170,15 +189,15 @@ class Optimizer8bit(torch.optim.Optimizer):
# Update parameter groups, setting their 'params' value
def update_group(group, new_group):
new_group['params'] = group['params']
new_group["params"] = group["params"]
return new_group
param_groups = [
update_group(g, ng) for g, ng in zip(groups, saved_groups)]
self.__setstate__({'state': state, 'param_groups': param_groups})
param_groups = [update_group(g, ng) for g, ng in zip(groups, saved_groups)]
self.__setstate__({"state": state, "param_groups": param_groups})
def to_gpu(self):
for gindex, group in enumerate(self.param_groups):
for pindex, p in enumerate(group['params']):
for pindex, p in enumerate(group["params"]):
if p in self.state:
values = self.state[p]
for k, v in values.items():
@ -189,17 +208,23 @@ class Optimizer8bit(torch.optim.Optimizer):
for module, attr, config in self.mng.module_weight_config_triple:
pmodule = getattr(module, attr)
assert pmodule is not None
assert isinstance(pmodule, torch.Tensor) or isinstance(pmodule, torch.Parameter)
assert isinstance(pmodule, torch.Tensor) or isinstance(
pmodule, torch.Parameter
)
found = False
for gindex, group in enumerate(self.param_groups):
if found: break
for pindex, p in enumerate(group['params']):
if found: break
if found:
break
for pindex, p in enumerate(group["params"]):
if found:
break
if id(p) == id(pmodule):
# found the matching parameter
# init override
self.mng.pid2config[id(p)] = config
self.mng.index2config[(gindex, pindex)] = self.mng.pid2config[id(p)]
self.mng.index2config[(gindex, pindex)] = self.mng.pid2config[
id(p)
]
found = True
@torch.no_grad()
@ -219,11 +244,11 @@ class Optimizer8bit(torch.optim.Optimizer):
if not self.initialized:
self.check_overrides()
self.to_gpu() # needed for fairseq pure fp16 training
self.to_gpu() # needed for fairseq pure fp16 training
self.initialized = True
for gindex, group in enumerate(self.param_groups):
for pindex, p in enumerate(group['params']):
for pindex, p in enumerate(group["params"]):
if p.grad is None:
continue
state = self.state[p]
@ -236,58 +261,70 @@ class Optimizer8bit(torch.optim.Optimizer):
def get_config(self, gindex, pindex, group):
config = {}
config['betas'] = group['betas']
config['eps'] = group['eps']
config['weight_decay'] = group['weight_decay']
config['lr'] = group['lr']
config['optim_bits'] = self.args.optim_bits
config['min_8bit_size'] = self.args.min_8bit_size
config['percentile_clipping'] = self.args.percentile_clipping
config['block_wise'] = self.args.block_wise
config['max_unorm'] = self.args.max_unorm
config['skip_zeros'] = self.args.skip_zeros
config["betas"] = group["betas"]
config["eps"] = group["eps"]
config["weight_decay"] = group["weight_decay"]
config["lr"] = group["lr"]
config["optim_bits"] = self.args.optim_bits
config["min_8bit_size"] = self.args.min_8bit_size
config["percentile_clipping"] = self.args.percentile_clipping
config["block_wise"] = self.args.block_wise
config["max_unorm"] = self.args.max_unorm
config["skip_zeros"] = self.args.skip_zeros
if (gindex, pindex) in self.mng.index2config:
config.update(self.mng.index2config[(gindex, pindex)])
return config
def init_state(self, group, p, gindex, pindex):
raise NotImplementedError(f'init_state method needs to be overidden')
raise NotImplementedError(f"init_state method needs to be overidden")
def update_step(self, group, p, gindex, pindex):
raise NotImplementedError(f'The update_step method needs to be overidden')
raise NotImplementedError(f"The update_step method needs to be overidden")
class Optimizer2State(Optimizer8bit):
def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0.0, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0,
skip_zeros=False):
def __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if isinstance(betas, str):
# format: '(beta1, beta2)'
betas = betas.replace('(', '').replace(')', '').strip().split(',')
betas = betas.replace("(", "").replace(")", "").strip().split(",")
betas = [float(b) for b in betas]
for i in range(len(betas)):
if not 0.0 <= betas[i] < 1.0:
raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}")
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(Optimizer2State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args['optim_bits'] = optim_bits
args['percentile_clipping'] = 100
args['min_8bit_size'] = min_8bit_size
args['percentile_clipping'] = percentile_clipping
args['block_wise'] = block_wise
args['max_unorm'] = max_unorm
args['skip_zeros'] = skip_zeros
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
@ -299,50 +336,83 @@ class Optimizer2State(Optimizer8bit):
def init_state(self, group, p, gindex, pindex):
config = self.get_config(gindex, pindex, group)
if config['optim_bits'] == 32:
if config["optim_bits"] == 32:
dtype = torch.float32
elif config['optim_bits'] == 8:
elif config["optim_bits"] == 8:
dtype = torch.uint8
else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}')
else:
raise NotImplementedError(
f'Amount of optimizer bits not supported: {config["optim_bits"]}'
)
if p.numel() < config['min_8bit_size']: dtype = torch.float32
if p.numel() < config["min_8bit_size"]:
dtype = torch.float32
state = self.state[p]
state['step'] = 0
state["step"] = 0
if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096):
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
state['state2'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
state["state1"] = torch.zeros_like(
p,
memory_format=torch.preserve_format,
dtype=torch.float32,
device=p.device,
)
state["state2"] = torch.zeros_like(
p,
memory_format=torch.preserve_format,
dtype=torch.float32,
device=p.device,
)
elif dtype == torch.uint8:
if state['step'] == 0:
if 'dynamic' not in self.name2qmap: self.fill_qmap()
self.name2qmap['dynamic'] = self.name2qmap['dynamic'].to(p.device)
self.name2qmap['udynamic'] = self.name2qmap['udynamic'].to(p.device)
if state["step"] == 0:
if "dynamic" not in self.name2qmap:
self.fill_qmap()
self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to(p.device)
self.name2qmap["udynamic"] = self.name2qmap["udynamic"].to(p.device)
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
state['qmap1'] = self.name2qmap['dynamic']
state["state1"] = torch.zeros_like(
p,
memory_format=torch.preserve_format,
dtype=torch.uint8,
device=p.device,
)
state["qmap1"] = self.name2qmap["dynamic"]
state['state2'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
state['qmap2'] = self.name2qmap['udynamic']
state["state2"] = torch.zeros_like(
p,
memory_format=torch.preserve_format,
dtype=torch.uint8,
device=p.device,
)
state["qmap2"] = self.name2qmap["udynamic"]
if config['block_wise']:
if config["block_wise"]:
n = p.numel()
blocks = n//2048
blocks = n // 2048
blocks += 1 if n % 2048 > 0 else 0
state['absmax1'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
state['absmax2'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
state["absmax1"] = torch.zeros(
(blocks,), dtype=torch.float32, device=p.device
)
state["absmax2"] = torch.zeros(
(blocks,), dtype=torch.float32, device=p.device
)
else:
state['max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state['new_max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state['max2'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state['new_max2'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state["new_max1"] = torch.zeros(
(1,), dtype=torch.float32, device=p.device
)
state["max2"] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state["new_max2"] = torch.zeros(
(1,), dtype=torch.float32, device=p.device
)
if config['percentile_clipping'] < 100:
state['gnorm_vec'] = torch.zeros((100,), device=p.device)
if config["percentile_clipping"] < 100:
state["gnorm_vec"] = torch.zeros((100,), device=p.device)
if config['max_unorm'] > 0.0:
state['unorm_vec'] = torch.zeros((1,), device=p.device)
if config["max_unorm"] > 0.0:
state["unorm_vec"] = torch.zeros((1,), device=p.device)
@torch.no_grad()
def update_step(self, group, p, gindex, pindex):
@ -351,41 +421,101 @@ class Optimizer2State(Optimizer8bit):
config = self.get_config(gindex, pindex, group)
state['step'] += 1
step = state['step']
state["step"] += 1
step = state["step"]
if config['percentile_clipping'] < 100:
current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(grad, state['gnorm_vec'], step, config['percentile_clipping'])
if config["percentile_clipping"] < 100:
current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(
grad, state["gnorm_vec"], step, config["percentile_clipping"]
)
else:
gnorm_scale = 1.0
if state['state1'].dtype == torch.float:
F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'],
state['state2'], config['betas'][1], config['weight_decay'], gnorm_scale,
state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'], skip_zeros=config['skip_zeros'])
if state["state1"].dtype == torch.float:
F.optimizer_update_32bit(
self.optimizer_name,
grad,
p,
state["state1"],
config["betas"][0],
config["eps"],
step,
config["lr"],
state["state2"],
config["betas"][1],
config["weight_decay"],
gnorm_scale,
state["unorm_vec"] if config["max_unorm"] > 0.0 else None,
max_unorm=config["max_unorm"],
skip_zeros=config["skip_zeros"],
)
elif state['state1'].dtype == torch.uint8 and not config['block_wise']:
F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], state['state2'], config['betas'][0], config['betas'][1],
config['eps'], step, config['lr'],
state['qmap1'], state['qmap2'], state['max1'], state['max2'], state['new_max1'], state['new_max2'],
config['weight_decay'], gnorm_scale=gnorm_scale,
unorm_vec=state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'])
elif state["state1"].dtype == torch.uint8 and not config["block_wise"]:
F.optimizer_update_8bit(
self.optimizer_name,
grad,
p,
state["state1"],
state["state2"],
config["betas"][0],
config["betas"][1],
config["eps"],
step,
config["lr"],
state["qmap1"],
state["qmap2"],
state["max1"],
state["max2"],
state["new_max1"],
state["new_max2"],
config["weight_decay"],
gnorm_scale=gnorm_scale,
unorm_vec=state["unorm_vec"] if config["max_unorm"] > 0.0 else None,
max_unorm=config["max_unorm"],
)
# swap maxes
state['max1'], state['new_max1'] = state['new_max1'], state['max1']
state['max2'], state['new_max2'] = state['new_max2'], state['max2']
elif state['state1'].dtype == torch.uint8 and config['block_wise']:
F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], state['state2'], config['betas'][0], config['betas'][1],
config['eps'], step, config['lr'],
state['qmap1'], state['qmap2'], state['absmax1'], state['absmax2'],
config['weight_decay'], gnorm_scale=gnorm_scale, skip_zeros=config['skip_zeros'])
state["max1"], state["new_max1"] = state["new_max1"], state["max1"]
state["max2"], state["new_max2"] = state["new_max2"], state["max2"]
elif state["state1"].dtype == torch.uint8 and config["block_wise"]:
F.optimizer_update_8bit_blockwise(
self.optimizer_name,
grad,
p,
state["state1"],
state["state2"],
config["betas"][0],
config["betas"][1],
config["eps"],
step,
config["lr"],
state["qmap1"],
state["qmap2"],
state["absmax1"],
state["absmax2"],
config["weight_decay"],
gnorm_scale=gnorm_scale,
skip_zeros=config["skip_zeros"],
)
class Optimizer1State(Optimizer8bit):
def __init__(self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8,
weight_decay=0.0, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0,
skip_zeros=False):
def __init__(
self,
optimizer_name,
params,
lr=1e-3,
betas=(0.9, 0.0),
eps=1e-8,
weight_decay=0.0,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
max_unorm=0.0,
skip_zeros=False,
):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
@ -395,19 +525,18 @@ class Optimizer1State(Optimizer8bit):
raise ValueError(f"Invalid beta parameter at index {i}: {betas[i]}")
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, betas=betas, eps=eps,
weight_decay=weight_decay)
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
super(Optimizer1State, self).__init__(params, defaults, optim_bits)
if args is None:
args = {}
args['optim_bits'] = optim_bits
args['percentile_clipping'] = 100
args['min_8bit_size'] = min_8bit_size
args['percentile_clipping'] = percentile_clipping
args['block_wise'] = block_wise
args['max_unorm'] = max_unorm
args['skip_zeros'] = skip_zeros
args["optim_bits"] = optim_bits
args["percentile_clipping"] = 100
args["min_8bit_size"] = min_8bit_size
args["percentile_clipping"] = percentile_clipping
args["block_wise"] = block_wise
args["max_unorm"] = max_unorm
args["skip_zeros"] = skip_zeros
self.args = MockArgs(args)
else:
@ -419,43 +548,61 @@ class Optimizer1State(Optimizer8bit):
def init_state(self, group, p, gindex, pindex):
config = self.get_config(gindex, pindex, group)
if config['optim_bits'] == 32:
if config["optim_bits"] == 32:
dtype = torch.float32
elif config['optim_bits'] == 8:
elif config["optim_bits"] == 8:
dtype = torch.uint8
else: raise NotImplementedError(f'Amount of optimizer bits not supported: {config["optim_bits"]}')
else:
raise NotImplementedError(
f'Amount of optimizer bits not supported: {config["optim_bits"]}'
)
if p.numel() < config['min_8bit_size']: dtype = torch.float32
if p.numel() < config["min_8bit_size"]:
dtype = torch.float32
state = self.state[p]
state['step'] = 0
state["step"] = 0
if dtype == torch.float32 or (dtype == torch.uint8 and p.numel() < 4096):
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device)
state["state1"] = torch.zeros_like(
p,
memory_format=torch.preserve_format,
dtype=torch.float32,
device=p.device,
)
elif dtype == torch.uint8:
if state['step'] == 0:
if 'dynamic' not in self.name2qmap: self.fill_qmap()
self.name2qmap['dynamic'] = self.name2qmap['dynamic'].to(p.device)
if state["step"] == 0:
if "dynamic" not in self.name2qmap:
self.fill_qmap()
self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to(p.device)
state['state1'] = torch.zeros_like(p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device)
state['qmap1'] = self.name2qmap['dynamic']
state["state1"] = torch.zeros_like(
p,
memory_format=torch.preserve_format,
dtype=torch.uint8,
device=p.device,
)
state["qmap1"] = self.name2qmap["dynamic"]
if config['block_wise']:
if config["block_wise"]:
n = p.numel()
blocks = n//2048
blocks = n // 2048
blocks += 1 if n % 2048 > 0 else 0
state['absmax1'] = torch.zeros((blocks,), dtype=torch.float32, device=p.device)
state["absmax1"] = torch.zeros(
(blocks,), dtype=torch.float32, device=p.device
)
else:
state['max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state['new_max1'] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state["max1"] = torch.zeros((1,), dtype=torch.float32, device=p.device)
state["new_max1"] = torch.zeros(
(1,), dtype=torch.float32, device=p.device
)
if config['percentile_clipping'] < 100:
state['gnorm_vec'] = torch.zeros((100,), device=p.device)
if config['max_unorm'] > 0.0:
state['unorm_vec'] = torch.zeros((1,), device=p.device)
if config["percentile_clipping"] < 100:
state["gnorm_vec"] = torch.zeros((100,), device=p.device)
if config["max_unorm"] > 0.0:
state["unorm_vec"] = torch.zeros((1,), device=p.device)
@torch.no_grad()
def update_step(self, group, p, gindex, pindex):
@ -464,29 +611,77 @@ class Optimizer1State(Optimizer8bit):
config = self.get_config(gindex, pindex, group)
state['step'] += 1
step = state['step']
state["step"] += 1
step = state["step"]
if config['percentile_clipping'] < 100:
current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(grad, state['gnorm_vec'], step, config['percentile_clipping'])
if config["percentile_clipping"] < 100:
current_gnorm, clip_value, gnorm_scale = F.percentile_clipping(
grad, state["gnorm_vec"], step, config["percentile_clipping"]
)
else:
gnorm_scale = 1.0
if state['state1'].dtype == torch.float:
F.optimizer_update_32bit(self.optimizer_name, grad, p, state['state1'], config['betas'][0], config['eps'], step, config['lr'],
None, 0.0, config['weight_decay'], gnorm_scale,
state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'],
skip_zeros=config['skip_zeros'])
if state["state1"].dtype == torch.float:
F.optimizer_update_32bit(
self.optimizer_name,
grad,
p,
state["state1"],
config["betas"][0],
config["eps"],
step,
config["lr"],
None,
0.0,
config["weight_decay"],
gnorm_scale,
state["unorm_vec"] if config["max_unorm"] > 0.0 else None,
max_unorm=config["max_unorm"],
skip_zeros=config["skip_zeros"],
)
elif state['state1'].dtype == torch.uint8 and not config['block_wise']:
F.optimizer_update_8bit(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1],
config['eps'], step, config['lr'], state['qmap1'], None, state['max1'], None, state['new_max1'], None,
config['weight_decay'], gnorm_scale,
state['unorm_vec'] if config['max_unorm'] > 0.0 else None, max_unorm=config['max_unorm'])
elif state["state1"].dtype == torch.uint8 and not config["block_wise"]:
F.optimizer_update_8bit(
self.optimizer_name,
grad,
p,
state["state1"],
None,
config["betas"][0],
config["betas"][1],
config["eps"],
step,
config["lr"],
state["qmap1"],
None,
state["max1"],
None,
state["new_max1"],
None,
config["weight_decay"],
gnorm_scale,
state["unorm_vec"] if config["max_unorm"] > 0.0 else None,
max_unorm=config["max_unorm"],
)
state['max1'], state['new_max1'] = state['new_max1'], state['max1']
elif state['state1'].dtype == torch.uint8 and config['block_wise']:
F.optimizer_update_8bit_blockwise(self.optimizer_name, grad, p, state['state1'], None, config['betas'][0], config['betas'][1],
config['eps'], step, config['lr'],
state['qmap1'], None, state['absmax1'], None,
config['weight_decay'], gnorm_scale=gnorm_scale, skip_zeros=config['skip_zeros'])
state["max1"], state["new_max1"] = state["new_max1"], state["max1"]
elif state["state1"].dtype == torch.uint8 and config["block_wise"]:
F.optimizer_update_8bit_blockwise(
self.optimizer_name,
grad,
p,
state["state1"],
None,
config["betas"][0],
config["betas"][1],
config["eps"],
step,
config["lr"],
state["qmap1"],
None,
state["absmax1"],
None,
config["weight_decay"],
gnorm_scale=gnorm_scale,
skip_zeros=config["skip_zeros"],
)

View File

@ -1,36 +1,109 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from bitsandbytes.optim.optimizer import Optimizer1State
class RMSprop(Optimizer1State):
def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
def __init__(
self,
params,
lr=1e-2,
alpha=0.99,
eps=1e-8,
weight_decay=0,
momentum=0,
centered=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if alpha == 0:
raise NotImplementedError(f'RMSprop with alpha==0.0 is not supported!')
raise NotImplementedError(f"RMSprop with alpha==0.0 is not supported!")
if centered:
raise NotImplementedError(f'Centered RMSprop is not supported!')
super(RMSprop, self).__init__('rmsprop', params, lr, (alpha, momentum), eps,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
raise NotImplementedError(f"Centered RMSprop is not supported!")
super(RMSprop, self).__init__(
"rmsprop",
params,
lr,
(alpha, momentum),
eps,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class RMSprop8bit(Optimizer1State):
def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
def __init__(
self,
params,
lr=1e-2,
alpha=0.99,
eps=1e-8,
weight_decay=0,
momentum=0,
centered=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if alpha == 0:
raise NotImplementedError(f'RMSprop with alpha==0.0 is not supported!')
raise NotImplementedError(f"RMSprop with alpha==0.0 is not supported!")
if centered:
raise NotImplementedError(f'Centered RMSprop is not supported!')
super(RMSprop8bit, self).__init__('rmsprop', params, lr, (alpha, momentum), eps,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
raise NotImplementedError(f"Centered RMSprop is not supported!")
super(RMSprop8bit, self).__init__(
"rmsprop",
params,
lr,
(alpha, momentum),
eps,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class RMSprop32bit(Optimizer1State):
def __init__(self, params, lr=1e-2, alpha=0.99, eps=1e-8, weight_decay=0, momentum=0, centered=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
def __init__(
self,
params,
lr=1e-2,
alpha=0.99,
eps=1e-8,
weight_decay=0,
momentum=0,
centered=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if alpha == 0:
raise NotImplementedError(f'RMSprop with alpha==0.0 is not supported!')
raise NotImplementedError(f"RMSprop with alpha==0.0 is not supported!")
if centered:
raise NotImplementedError(f'Centered RMSprop is not supported!')
super(RMSprop32bit, self).__init__('rmsprop', params, lr, (alpha, momentum), eps,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
raise NotImplementedError(f"Centered RMSprop is not supported!")
super(RMSprop32bit, self).__init__(
"rmsprop",
params,
lr,
(alpha, momentum),
eps,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)

View File

@ -1,32 +1,99 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from bitsandbytes.optim.optimizer import Optimizer1State
class SGD(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, optim_bits=32, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
optim_bits=32,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if momentum == 0:
raise NotImplementedError(f'SGD without momentum is not supported!')
super(SGD, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
weight_decay, optim_bits, args, min_8bit_size, percentile_clipping, block_wise)
raise NotImplementedError(f"SGD without momentum is not supported!")
super(SGD, self).__init__(
"momentum",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
optim_bits,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class SGD8bit(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if momentum == 0:
raise NotImplementedError(f'SGD without momentum is not supported!')
super(SGD8bit, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
weight_decay, 8, args, min_8bit_size, percentile_clipping, block_wise)
raise NotImplementedError(f"SGD without momentum is not supported!")
super(SGD8bit, self).__init__(
"momentum",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
8,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)
class SGD32bit(Optimizer1State):
def __init__(self, params, lr, momentum=0, dampening=0,
weight_decay=0, nesterov=False, args=None,
min_8bit_size=4096, percentile_clipping=100, block_wise=True):
def __init__(
self,
params,
lr,
momentum=0,
dampening=0,
weight_decay=0,
nesterov=False,
args=None,
min_8bit_size=4096,
percentile_clipping=100,
block_wise=True,
):
if momentum == 0:
raise NotImplementedError(f'SGD without momentum is not supported!')
super(SGD32bit, self).__init__('momentum', params, lr, (momentum, dampening), 0.0,
weight_decay, 32, args, min_8bit_size, percentile_clipping, block_wise)
raise NotImplementedError(f"SGD without momentum is not supported!")
super(SGD32bit, self).__init__(
"momentum",
params,
lr,
(momentum, dampening),
0.0,
weight_decay,
32,
args,
min_8bit_size,
percentile_clipping,
block_wise,
)

View File

@ -1,7 +1,9 @@
import sys
def print_err(s: str) -> None:
print(s, file=sys.stderr)
def warn_of_missing_prerequisite(s: str) -> None:
print_err('WARNING, missing pre-requisite: ' + s)
print_err("WARNING, missing pre-requisite: " + s)

View File

@ -1,31 +1,45 @@
from itertools import product
import torch
import bitsandbytes as bnb
import bitsandbytes.functional as F
from itertools import product
def test_igemmlt(dim1, dim2, dim3, dim4, dims, ldb):
k = 25
for i in range(k):
if dims == 2:
A = torch.randint(-128, 127, size=(dim1, dim3), device='cuda').to(torch.int8)
A = torch.randint(-128, 127, size=(dim1, dim3), device="cuda").to(
torch.int8
)
elif dims == 3:
A = torch.randint(-128, 127, size=(dim1, dim2, dim3), device='cuda').to(torch.int8)
B = torch.randint(-128, 127, size=(dim4, dim3), device='cuda').to(torch.int8)
A = torch.randint(-128, 127, size=(dim1, dim2, dim3), device="cuda").to(
torch.int8
)
B = torch.randint(-128, 127, size=(dim4, dim3), device="cuda").to(torch.int8)
C1 = torch.matmul(A.float(), B.t().float())
A2, SA = F.transform(A, 'col32')
B2, SB = F.transform(B, 'colx')
A2, SA = F.transform(A, "col32")
B2, SB = F.transform(B, "colx")
if dims == 2:
C2, SC = F.transform(torch.zeros(A.shape[0], B.shape[0], dtype=torch.int32, device='cuda'), 'col32')
C2, SC = F.transform(
torch.zeros(A.shape[0], B.shape[0], dtype=torch.int32, device="cuda"),
"col32",
)
else:
C2, SC = F.transform(torch.zeros(A.shape[0], A.shape[1], B.shape[0], dtype=torch.int32, device='cuda'), 'col32')
C2, SC = F.transform(
torch.zeros(
A.shape[0], A.shape[1], B.shape[0], dtype=torch.int32, device="cuda"
),
"col32",
)
F.igemmlt(A2, B2, C2, SA, SB, SC)
C3, S = F.transform(C2, 'row', state=SC)
#torch.testing.assert_allclose(C1, C3.float())
#print(C1)
#print(C2)
#print(C3)
C3, S = F.transform(C2, "row", state=SC)
# torch.testing.assert_allclose(C1, C3.float())
# print(C1)
# print(C2)
# print(C3)
allclose = torch.allclose(C1, C3.float())
if allclose:
print(C1)
@ -33,29 +47,29 @@ def test_igemmlt(dim1, dim2, dim3, dim4, dims, ldb):
print(C3)
## transposed
#A = torch.randint(-128, 127, size=(dim4, dim3), device='cuda').to(torch.int8)
#if dims == 2:
# A = torch.randint(-128, 127, size=(dim4, dim3), device='cuda').to(torch.int8)
# if dims == 2:
# B = torch.randint(-128, 127, size=(dim1, dim3), device='cuda').to(torch.int8)
# C1 = torch.matmul(A.float(), B.float().t())
#elif dims == 3:
# elif dims == 3:
# B = torch.randint(-128, 127, size=(dim1, dim2, dim3), device='cuda').to(torch.int8)
# C1 = torch.matmul(B.float(), A.t().float())
# C1 = C1.permute([2, 0, 1])
#A2, SA = F.transform(A, 'col32')
#B2, SB = F.transform(B, 'colx')
#if dims == 2:
# A2, SA = F.transform(A, 'col32')
# B2, SB = F.transform(B, 'colx')
# if dims == 2:
# C2, SC = F.transform(torch.zeros(A.shape[0], B.shape[0], dtype=torch.int32, device='cuda'), 'col32')
#else:
# else:
# C2 = torch.zeros(A.shape[0], B.shape[0], B.shape[1], dtype=torch.int32, device='cuda')
# state = (C2.shape, 'row', A.shape[0])
# C2, SC = F.transform(C2, 'col32', state=state)
#F.igemmlt(A2, B2, C2, SA, SB, SC)
#C3, S = F.transform(C2, 'row', state=SC, ld=[0])
#torch.testing.assert_allclose(C1, C3.float())
# F.igemmlt(A2, B2, C2, SA, SB, SC)
# C3, S = F.transform(C2, 'row', state=SC, ld=[0])
# torch.testing.assert_allclose(C1, C3.float())
## weight update
#if dims == 3:
# if dims == 3:
# A = torch.randint(-128, 127, size=(dim1, dim2, dim3), device='cuda').to(torch.int8)
# B = torch.randint(-128, 127, size=(dim1, dim2, dim4), device='cuda').to(torch.int8)
# C1 = torch.matmul(B.view(-1, B.shape[-1]).t().float(), A.view(-1, A.shape[-1]).float())
@ -73,18 +87,18 @@ dims = (2, 3)
ldb = [0]
n = 2
dim1 = torch.randint(1,256, size=(n,)).tolist()
dim2 = torch.randint(32,512, size=(n,)).tolist()
dim3 = torch.randint(32,1024, size=(n,)).tolist()
dim4 = torch.randint(32,1024, size=(n,)).tolist()
values = list(product(dim1,dim2,dim3,dim4,dims, ldb))
dim1 = torch.randint(1, 256, size=(n,)).tolist()
dim2 = torch.randint(32, 512, size=(n,)).tolist()
dim3 = torch.randint(32, 1024, size=(n,)).tolist()
dim4 = torch.randint(32, 1024, size=(n,)).tolist()
values = list(product(dim1, dim2, dim3, dim4, dims, ldb))
for ldb in range(32, 4096, 32):
#for ldb in [None]:
# for ldb in [None]:
val = test_igemmlt(2, 2, 2, 2, 2, ldb)
if val:
print(val, ldb)
else:
print('nope', ldb)
#for val in values:
#test_igemmlt(*val)
print("nope", ldb)
# for val in values:
# test_igemmlt(*val)

View File

@ -1,19 +1,21 @@
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import glob
from setuptools import setup, find_packages
import os
from setuptools import find_packages, setup
libs = list(glob.glob('./bitsandbytes/libbitsandbytes*.so'))
libs = list(glob.glob("./bitsandbytes/libbitsandbytes*.so"))
libs = [os.path.basename(p) for p in libs]
print('libs:', libs)
print("libs:", libs)
def read(fname):
return open(os.path.join(os.path.dirname(__file__), fname)).read()
setup(
name=f"bitsandbytes",
version=f"0.31.0",
@ -27,11 +29,11 @@ setup(
entry_points={
"console_scripts": ["debug_cuda = bitsandbytes.debug_cli:cli"],
},
package_data={'': libs},
long_description=read('README.md'),
long_description_content_type='text/markdown',
package_data={"": libs},
long_description=read("README.md"),
long_description_content_type="text/markdown",
classifiers=[
"Development Status :: 4 - Beta",
'Topic :: Scientific/Engineering :: Artificial Intelligence'
"Topic :: Scientific/Engineering :: Artificial Intelligence",
],
)

View File

@ -1,27 +1,38 @@
import pytest
import torch
import bitsandbytes as bnb
from itertools import product
import pytest
import torch
import bitsandbytes as bnb
n = 1
k = 25
dim1 = torch.randint(16,64, size=(n,)).tolist()
dim2 = torch.randint(32,96, size=(n,)).tolist()
dim3 = torch.randint(32,96, size=(n,)).tolist()
dim4 = torch.randint(32,96, size=(n,)).tolist()
dim1 = torch.randint(16, 64, size=(n,)).tolist()
dim2 = torch.randint(32, 96, size=(n,)).tolist()
dim3 = torch.randint(32, 96, size=(n,)).tolist()
dim4 = torch.randint(32, 96, size=(n,)).tolist()
funcs = [(torch.bmm, bnb.bmm_cublas), (torch.matmul, bnb.matmul_cublas)]
str_funcs = ['bmm', 'matmul']
str_funcs = ["bmm", "matmul"]
req_grad = [(False, False), (True, False), (True, True), (False, True)]
req_grad_str = ['FF', 'TF', 'TT', 'FT']
req_grad_str = ["FF", "TF", "TT", "FT"]
transpose = [(False, False), (False, True), (True, True), (True, False)]
str_transpose = ['FF', 'FT', 'TT', 'TF']
str_transpose = ["FF", "FT", "TT", "TF"]
dtype = [torch.float32, torch.float16]
values = list(product(dim1,dim2,dim3,dim4,funcs, dtype, req_grad, transpose))
str_values = list(product(dim1,dim2,dim3,dim4,str_funcs, dtype, req_grad_str, str_transpose))
names = ['dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}'.format(*vals) for vals in str_values]
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose", values, ids=names)
values = list(product(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose))
str_values = list(
product(dim1, dim2, dim3, dim4, str_funcs, dtype, req_grad_str, str_transpose)
)
names = [
"dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}".format(
*vals
)
for vals in str_values
]
@pytest.mark.parametrize(
"dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose", values, ids=names
)
def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
dim2 = dim2 - (dim2 % 16)
dim3 = dim3 - (dim3 % 16)
@ -32,9 +43,11 @@ def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
if funcs[0] in [torch.mm, torch.matmul]:
dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
A = torch.randn(size=dimA, device='cuda', requires_grad=req_grad[0])
B = torch.randn(size=dimB, device='cuda', requires_grad=req_grad[1])
target = torch.randn(size=(dim2, dim4), device='cuda', requires_grad=req_grad[1])
A = torch.randn(size=dimA, device="cuda", requires_grad=req_grad[0])
B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1])
target = torch.randn(
size=(dim2, dim4), device="cuda", requires_grad=req_grad[1]
)
torch.nn.init.xavier_uniform_(B)
if not transpose[0] and not transpose[1]:
@ -52,9 +65,9 @@ def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
n = out_bnb.numel()
idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
assert (idx==0).sum().item() < n*0.0175
assert (idx == 0).sum().item() < n * 0.0175
idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
assert (idx==0).sum().item() < n*0.001
assert (idx == 0).sum().item() < n * 0.001
if any(req_grad):
out_bnb.data.copy_(out_torch)
@ -78,16 +91,22 @@ def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
if req_grad[1]:
n = gradB1.numel()
idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
assert (idx==0).sum().item() < n*0.1
assert (idx == 0).sum().item() < n * 0.1
idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
assert (idx==0).sum().item() < n*0.02
assert (idx == 0).sum().item() < n * 0.02
torch.testing.assert_allclose(gradB1, gradB2, atol=0.18, rtol=0.3)
# batched matrix multiply
if funcs[0] in [torch.bmm, torch.matmul]:
A = torch.randn(size=(dim1, dim2, dim3), device='cuda', requires_grad=req_grad[0])
B = torch.randn(size=(dim1, dim3, dim4), device='cuda', requires_grad=req_grad[1])
target = torch.randn(size=(dim1, dim2, dim4), device='cuda', requires_grad=req_grad[1])
A = torch.randn(
size=(dim1, dim2, dim3), device="cuda", requires_grad=req_grad[0]
)
B = torch.randn(
size=(dim1, dim3, dim4), device="cuda", requires_grad=req_grad[1]
)
target = torch.randn(
size=(dim1, dim2, dim4), device="cuda", requires_grad=req_grad[1]
)
torch.nn.init.xavier_uniform_(B)
out_torch = funcs[0](A, B)
@ -95,7 +114,7 @@ def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
n = out_bnb.numel()
idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
assert (idx==0).sum().item() < n*0.01
assert (idx == 0).sum().item() < n * 0.01
torch.testing.assert_allclose(out_bnb, out_torch, atol=0.027, rtol=0.2)
if any(req_grad):
@ -120,16 +139,20 @@ def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
if req_grad[1]:
n = gradB1.numel()
idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
assert (idx==0).sum().item() < n*0.1
assert (idx == 0).sum().item() < n * 0.1
idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
assert (idx==0).sum().item() < n*0.02
assert (idx == 0).sum().item() < n * 0.02
if funcs[0] in [torch.matmul]:
dim1 = dim1 - (dim1 % 16)
A = torch.randn(size=(dim1, dim2, dim3), device='cuda', requires_grad=req_grad[0])
A = torch.randn(
size=(dim1, dim2, dim3), device="cuda", requires_grad=req_grad[0]
)
dimB = (dim4, dim3) if transpose[1] else (dim3, dim4)
B = torch.randn(size=dimB, device='cuda', requires_grad=req_grad[1])
target = torch.randn(size=(dim1, dim2, dim4), device='cuda', requires_grad=req_grad[1])
B = torch.randn(size=dimB, device="cuda", requires_grad=req_grad[1])
target = torch.randn(
size=(dim1, dim2, dim4), device="cuda", requires_grad=req_grad[1]
)
torch.nn.init.xavier_uniform_(B)
if transpose[1]:
@ -141,9 +164,9 @@ def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
n = out_bnb.numel()
idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
assert (idx==0).sum().item() < n*0.0175
assert (idx == 0).sum().item() < n * 0.0175
idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
assert (idx==0).sum().item() < n*0.001
assert (idx == 0).sum().item() < n * 0.001
if any(req_grad):
out_bnb.data.copy_(out_torch)
@ -167,51 +190,96 @@ def test_matmul(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose):
if req_grad[1]:
n = gradB1.numel()
idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
assert (idx==0).sum().item() < n*0.1
assert (idx == 0).sum().item() < n * 0.1
idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
assert (idx==0).sum().item() < n*0.02
assert (idx == 0).sum().item() < n * 0.02
n = 1
k = 3
dim1 = torch.randint(16,64, size=(n,)).tolist()
dim2 = torch.randint(32,96, size=(n,)).tolist()
dim3 = torch.randint(32,96, size=(n,)).tolist()
dim4 = torch.randint(32,96, size=(n,)).tolist()
dim1 = torch.randint(16, 64, size=(n,)).tolist()
dim2 = torch.randint(32, 96, size=(n,)).tolist()
dim3 = torch.randint(32, 96, size=(n,)).tolist()
dim4 = torch.randint(32, 96, size=(n,)).tolist()
#dim1 = (17,)
#dim2 = (7,)
#dim3 = (37,)
#dim4 = (23,)
# dim1 = (17,)
# dim2 = (7,)
# dim3 = (37,)
# dim4 = (23,)
decomp = [0.0, 6.0]
funcs = [(torch.matmul, bnb.matmul)]
str_funcs = ['matmul']
str_funcs = ["matmul"]
req_grad = [(False, False), (True, False), (True, True), (False, True)]
req_grad_str = ['FF', 'TF', 'TT', 'FT']
req_grad_str = ["FF", "TF", "TT", "FT"]
transpose = [(False, True), (False, False)]
str_transpose = ['NT', 'NN']
str_transpose = ["NT", "NN"]
dtype = [torch.float16]
has_fp16_weights = [True, False]
values = list(product(dim1,dim2,dim3,dim4,funcs, dtype, req_grad, transpose, decomp, has_fp16_weights))
str_values = list(product(dim1,dim2,dim3,dim4,str_funcs, dtype, req_grad_str, str_transpose, decomp, has_fp16_weights))
names = ['dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}_decomp_{8}_has_fp16_weights_{9}'.format(*vals) for vals in str_values]
@pytest.mark.parametrize("dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights", values, ids=names)
def test_matmullt(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights):
values = list(
product(
dim1,
dim2,
dim3,
dim4,
funcs,
dtype,
req_grad,
transpose,
decomp,
has_fp16_weights,
)
)
str_values = list(
product(
dim1,
dim2,
dim3,
dim4,
str_funcs,
dtype,
req_grad_str,
str_transpose,
decomp,
has_fp16_weights,
)
)
names = [
"dim1_{0}_dim2_{1}_dim3_{2}_dim4_{3}_func_{4}_dtype_{5}_requires_grad_{6}_transpose_{7}_decomp_{8}_has_fp16_weights_{9}".format(
*vals
)
for vals in str_values
]
@pytest.mark.parametrize(
"dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights",
values,
ids=names,
)
def test_matmullt(
dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, decomp, has_fp16_weights
):
dimA = (dim2, dim3) if not transpose[0] else (dim3, dim2)
dimB = (dim3, dim4) if not transpose[1] else (dim4, dim3)
outlier_dim = torch.randint(0, dimA[1], size=(dimA[1]//8,), device='cuda')
outlier_dim = torch.randint(0, dimA[1], size=(dimA[1] // 8,), device="cuda")
for i in range(k):
# normal multiply
if funcs[0] in [torch.mm, torch.matmul]:
A = torch.randn(size=dimA, device='cuda', requires_grad=req_grad[0], dtype=dtype)
A = torch.randn(
size=dimA, device="cuda", requires_grad=req_grad[0], dtype=dtype
)
if decomp == 6.0:
with torch.no_grad():
A[:, outlier_dim] = 6.0
B = torch.randn(size=dimB, device='cuda', requires_grad=req_grad[1], dtype=dtype)
target = torch.randn(size=(dim2, dim4), device='cuda', requires_grad=req_grad[1], dtype=dtype)
B = torch.randn(
size=dimB, device="cuda", requires_grad=req_grad[1], dtype=dtype
)
target = torch.randn(
size=(dim2, dim4), device="cuda", requires_grad=req_grad[1], dtype=dtype
)
torch.nn.init.xavier_uniform_(B)
B2 = B.clone()
@ -219,8 +287,15 @@ def test_matmullt(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, dec
state.threshold = decomp
state.has_fp16_weights = has_fp16_weights
if not has_fp16_weights:
if not transpose[0] and not transpose[1]: B2 = B2.t().contiguous()
state.CB, CBt, state.SCB, SCBt, coo_tensorB = bnb.functional.double_quant(B2)
if not transpose[0] and not transpose[1]:
B2 = B2.t().contiguous()
(
state.CB,
CBt,
state.SCB,
SCBt,
coo_tensorB,
) = bnb.functional.double_quant(B2)
B2 = state.CB
if not transpose[0] and transpose[1]:
@ -231,12 +306,12 @@ def test_matmullt(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, dec
out_bnb = funcs[1](A, B2.t(), state=state)
n = out_bnb.numel()
err = torch.abs(out_bnb-out_torch).mean().item()
#print(f'abs error {err:.4f}')
err = torch.abs(out_bnb - out_torch).mean().item()
# print(f'abs error {err:.4f}')
idx = torch.isclose(out_bnb, out_torch, atol=0.01, rtol=0.1)
assert (idx==0).sum().item() < n*0.0175
assert (idx == 0).sum().item() < n * 0.0175
idx = torch.isclose(out_bnb, out_torch, atol=0.035, rtol=0.2)
assert (idx==0).sum().item() < n*0.001
assert (idx == 0).sum().item() < n * 0.001
if has_fp16_weights:
if any(req_grad):
@ -263,8 +338,7 @@ def test_matmullt(dim1, dim2, dim3, dim4, funcs, dtype, req_grad, transpose, dec
assert torch.abs(gradB1).sum() > 0.0
assert torch.abs(gradB2).sum() > 0.0
idx = torch.isclose(gradB1, gradB2, atol=0.06, rtol=0.3)
assert (idx==0).sum().item() < n*0.1
assert (idx == 0).sum().item() < n * 0.1
idx = torch.isclose(gradB1, gradB2, atol=0.10, rtol=0.3)
assert (idx==0).sum().item() < n*0.02
assert (idx == 0).sum().item() < n * 0.02
torch.testing.assert_allclose(gradB1, gradB2, atol=0.18, rtol=0.3)

View File

@ -1,37 +1,45 @@
import pytest
import os
from typing import List, NamedTuple
from typing import List
import pytest
from bitsandbytes.cuda_setup import (
CUDA_RUNTIME_LIB,
get_cuda_runtime_lib_path,
evaluate_cuda_setup,
tokenize_paths,
)
from bitsandbytes.cuda_setup import (CUDA_RUNTIME_LIB, evaluate_cuda_setup,
get_cuda_runtime_lib_path, tokenize_paths)
HAPPY_PATH__LD_LIB_TEST_PATHS: List[tuple[str,str]] = [
class InputAndExpectedOutput(NamedTuple):
input: str
output: str
HAPPY_PATH__LD_LIB_TEST_PATHS: List[InputAndExpectedOutput] = [
(f"some/other/dir:dir/with/{CUDA_RUNTIME_LIB}", f"dir/with/{CUDA_RUNTIME_LIB}"),
(f":some/other/dir:dir/with/{CUDA_RUNTIME_LIB}", f"dir/with/{CUDA_RUNTIME_LIB}"),
(f"some/other/dir:dir/with/{CUDA_RUNTIME_LIB}:", f"dir/with/{CUDA_RUNTIME_LIB}"),
(f"some/other/dir::dir/with/{CUDA_RUNTIME_LIB}", f"dir/with/{CUDA_RUNTIME_LIB}"),
(f"dir/with/{CUDA_RUNTIME_LIB}:some/other/dir", f"dir/with/{CUDA_RUNTIME_LIB}"),
(f"dir/with/{CUDA_RUNTIME_LIB}:other/dir/libcuda.so", f"dir/with/{CUDA_RUNTIME_LIB}"),
(
f"dir/with/{CUDA_RUNTIME_LIB}:other/dir/libcuda.so",
f"dir/with/{CUDA_RUNTIME_LIB}",
),
]
@pytest.mark.parametrize(
"test_input, expected",
HAPPY_PATH__LD_LIB_TEST_PATHS
)
@pytest.fixture(params=HAPPY_PATH__LD_LIB_TEST_PATHS)
def happy_path_path_string(tmpdir, request):
for path in tokenize_paths(request.param):
test_dir.mkdir()
if CUDA_RUNTIME_LIB in path:
(test_input / CUDA_RUNTIME_LIB).touch()
@pytest.mark.parametrize("test_input, expected", HAPPY_PATH__LD_LIB_TEST_PATHS)
def test_get_cuda_runtime_lib_path__happy_path(
tmp_path, test_input: str, expected: str
tmp_path, test_input: str, expected: str
):
for path in tokenize_paths(test_input):
assert False == tmp_path / test_input
test_dir.mkdir()
(test_input / CUDA_RUNTIME_LIB).touch()
path.mkdir()
(path / CUDA_RUNTIME_LIB).touch()
assert get_cuda_runtime_lib_path(test_input) == expected
@ -47,40 +55,33 @@ def test_get_cuda_runtime_lib_path__unhappy_path(tmp_path, test_input: str):
(test_input / CUDA_RUNTIME_LIB).touch()
with pytest.raises(FileNotFoundError) as err_info:
get_cuda_runtime_lib_path(test_input)
assert all(
match in err_info
for match in {"duplicate", CUDA_RUNTIME_LIB}
)
assert all(match in err_info for match in {"duplicate", CUDA_RUNTIME_LIB})
def test_get_cuda_runtime_lib_path__non_existent_dir(capsys, tmp_path):
existent_dir = tmp_path / 'a/b'
existent_dir = tmp_path / "a/b"
existent_dir.mkdir()
non_existent_dir = tmp_path / 'c/d' # non-existent dir
non_existent_dir = tmp_path / "c/d" # non-existent dir
test_input = ":".join([str(existent_dir), str(non_existent_dir)])
get_cuda_runtime_lib_path(test_input)
std_err = capsys.readouterr().err
assert all(
match in std_err
for match in {"WARNING", "non-existent"}
)
assert all(match in std_err for match in {"WARNING", "non-existent"})
def test_full_system():
## this only tests the cuda version and not compute capability
ld_path = os.environ['LD_LIBRARY_PATH']
paths = ld_path.split(':')
version = ''
ld_path = os.environ["LD_LIBRARY_PATH"]
paths = ld_path.split(":")
version = ""
for p in paths:
if 'cuda' in p:
idx = p.rfind('cuda-')
version = p[idx+5:idx+5+4].replace('/', '')
if "cuda" in p:
idx = p.rfind("cuda-")
version = p[idx + 5 : idx + 5 + 4].replace("/", "")
version = float(version)
break
binary_name = evaluate_cuda_setup()
binary_name = binary_name.replace('libbitsandbytes_cuda', '')
assert binary_name.startswith(str(version).replace('.', ''))
binary_name = binary_name.replace("libbitsandbytes_cuda", "")
assert binary_name.startswith(str(version).replace(".", ""))

File diff suppressed because it is too large Load Diff

View File

@ -1,21 +1,27 @@
from itertools import product
import pytest
import torch
from itertools import product
from torch import nn
import bitsandbytes as bnb
class MockArgs(object):
def __init__(self, initial_data):
for key in initial_data:
setattr(self, key, initial_data[key])
class MLP8bit(torch.nn.Module):
def __init__(self, dim1, dim2, has_fp16_weights=True, threshold=0.0):
super(MLP8bit, self).__init__()
self.fc1 = bnb.nn.Linear8bitLt(dim1, dim2, has_fp16_weights=has_fp16_weights, threshold=threshold)
self.fc2 = bnb.nn.Linear8bitLt(dim2, dim1, has_fp16_weights=has_fp16_weights, threshold=threshold)
self.fc1 = bnb.nn.Linear8bitLt(
dim1, dim2, has_fp16_weights=has_fp16_weights, threshold=threshold
)
self.fc2 = bnb.nn.Linear8bitLt(
dim2, dim1, has_fp16_weights=has_fp16_weights, threshold=threshold
)
def forward(self, x):
x = self.fc1(x)
@ -25,108 +31,114 @@ class MLP8bit(torch.nn.Module):
def get_args():
args = MockArgs([])
args.quant_type = 'vector'
args.use_8bit_training = 'full'
args.quant_type = "vector"
args.use_8bit_training = "full"
args.clip_freq = 9999
return args
def assert_all_approx_close(a, b, atol=1e-8, rtol=1e-5, count=10):
idx = torch.isclose(a, b, rtol, atol)
sumval = (idx==0).sum().item()
sumval = (idx == 0).sum().item()
if sumval > count:
print(f'Too many values not close: assert {sumval} < {count}')
print(f"Too many values not close: assert {sumval} < {count}")
torch.testing.assert_allclose(a, b, rtol, atol)
class LinearFunction(torch.autograd.Function):
class LinearFunction(torch.autograd.Function):
@staticmethod
def get_8bit_linear_trimmed(x, stochastic=False, trim_value=3.0):
round_func = LinearFunction.round_stoachastic if stochastic else torch.round
norm = math.sqrt(math.pi)/math.sqrt(2.0)
#std = torch.abs(x).mean()*norm
norm = math.sqrt(math.pi) / math.sqrt(2.0)
# std = torch.abs(x).mean()*norm
std = torch.std(x)
max1 = std*trim_value
x = x/max1*127
max1 = std * trim_value
x = x / max1 * 127
x = round_func(x)
x[x > 127] = 127
x[x < -127] = -127
x = x/127*max1
x = x / 127 * max1
return x
def quant(x, quant_type, dim=1):
if quant_type == 'linear':
if quant_type == "linear":
max1 = torch.abs(x).max().float()
xq = torch.round(x/max1*127).to(torch.int8)
xq = torch.round(x / max1 * 127).to(torch.int8)
return xq, max1
elif quant_type == 'vector':
elif quant_type == "vector":
max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
xq = torch.round(x/max1*127).to(torch.int8)
xq = torch.round(x / max1 * 127).to(torch.int8)
return xq, max1
elif quant_type == 'min-max':
elif quant_type == "min-max":
maxA = torch.amax(x, dim=dim, keepdim=True).float()
minA = torch.amin(x, dim=dim, keepdim=True).float()
scale = (maxA-minA)/2.0
xq = torch.round(127*(x-minA-scale)/scale).to(torch.int8)
scale = (maxA - minA) / 2.0
xq = torch.round(127 * (x - minA - scale) / scale).to(torch.int8)
return xq, (minA.float(), scale.float())
else: return None
else:
return None
def dequant(xq, S1, S2, dtype, quant_type):
if quant_type == 'linear':
norm = S1*S2/(127*127)
if quant_type == "linear":
norm = S1 * S2 / (127 * 127)
# double cast needed to prevent overflows
return (xq.float()*norm).to(dtype)
elif quant_type == 'vector':
return (xq.float() * norm).to(dtype)
elif quant_type == "vector":
x = xq.float()
if len(xq.shape) == 2 and len(S1.shape) == 3: S1 = S1.squeeze(0)
if len(xq.shape) == 2 and len(S2.shape) == 3: S2 = S2.squeeze(0)
#print(x.shape, S1.shape, S2.shape)
if len(xq.shape) == 2 and len(S1.shape) == 3:
S1 = S1.squeeze(0)
if len(xq.shape) == 2 and len(S2.shape) == 3:
S2 = S2.squeeze(0)
# print(x.shape, S1.shape, S2.shape)
if len(S1.shape) == 2:
x *= S1.t()/127
x *= S1.t() / 127
else:
x *= S1/127
x *= S2/127
x *= S1 / 127
x *= S2 / 127
return x.to(dtype)
else: return None
else:
return None
def dequant_min_max(xq, A, B, SA, SB, dtype):
offset = B.float().t().sum(0)*(SA[0]+SA[1])
offset = B.float().t().sum(0) * (SA[0] + SA[1])
x = xq.float()
if len(xq.shape) == 2 and len(SB.shape) == 3: SB = SB.squeeze(0)
if len(xq.shape) == 2 and len(SA.shape) == 3: SA = SA.squeeze(0)
if len(xq.shape) == 2 and len(SB.shape) == 3:
SB = SB.squeeze(0)
if len(xq.shape) == 2 and len(SA.shape) == 3:
SA = SA.squeeze(0)
if len(SB.shape) == 2:
x *= SB.t()/127
x *= SB.t() / 127
else:
x *= SB/127
x *= SA[1]/127
x +=offset
x *= SB / 127
x *= SA[1] / 127
x += offset
return x.to(dtype)
def get_8bit_linear(x, stochastic=False):
round_func = LinearFunction.round_stoachastic if stochastic else torch.round
max1 = torch.abs(x).max()
x = x/max1*127
x = round_func(x)/127*max1
#x = torch.round(x)/128*max1
x = x / max1 * 127
x = round_func(x) / 127 * max1
# x = torch.round(x)/128*max1
return x
@staticmethod
def get_8bit_vector_wise(x, dim, stochastic=False):
round_func = LinearFunction.round_stoachastic if stochastic else torch.round
max1 = torch.amax(torch.abs(x), dim=dim, keepdim=True)
max1[max1==0] = 1.0
x = (x*127)/max1
x = round_func(x)/127*max1
max1[max1 == 0] = 1.0
x = (x * 127) / max1
x = round_func(x) / 127 * max1
return x
@staticmethod
def round_stoachastic(x):
sign = torch.sign(x)
absx = torch.abs(x)
decimal = absx-torch.floor(absx)
decimal = absx - torch.floor(absx)
rdm = torch.rand_like(decimal)
return sign*(torch.floor(absx)+(rdm < decimal).to(x.dtype))
return sign * (torch.floor(absx) + (rdm < decimal).to(x.dtype))
@staticmethod
def fake_8bit_storage(w, exponent_bits):
@ -140,10 +152,10 @@ class LinearFunction(torch.autograd.Function):
@staticmethod
def fake_8bit_storage_quantile(w, args):
code = bnb.functional.estimate_quantiles(w.data, offset=args.offset)
#C = bnb.functional.quantize_no_absmax(code, w)
#out = bnb.functional.dequantize_no_absmax(code, C, out=w.data)
#print(out)
#out = out.half()
# C = bnb.functional.quantize_no_absmax(code, w)
# out = bnb.functional.dequantize_no_absmax(code, C, out=w.data)
# print(out)
# out = out.half()
code /= torch.max(torch.abs(code))
absmax, C = bnb.functional.quantize_blockwise(w.data, code=code)
out = bnb.functional.dequantize_blockwise(absmax, C, code)
@ -162,7 +174,7 @@ class LinearFunction(torch.autograd.Function):
@staticmethod
def fake_8bit_storage_with_max(w, topk=8):
blocked_w = einops.rearrange(w.flatten(), '(h b) -> h b', b=256)
blocked_w = einops.rearrange(w.flatten(), "(h b) -> h b", b=256)
max_val, idx = torch.sort(torch.abs(blocked_w), dim=1, descending=True)
idx = idx[:, :topk]
max_val = max_val[:, :topk]
@ -191,22 +203,21 @@ class LinearFunction(torch.autograd.Function):
w.copy_(unblocked_w)
return unblocked_w
@staticmethod
def forward(ctx, x, weight, bias=None, args=None):
if args.use_8bit_training != 'off':
if args.use_8bit_training != "off":
weight8, S1 = LinearFunction.quant(weight, args.quant_type, dim=1)
x8, S2 = LinearFunction.quant(x, args.quant_type, dim=2)
outputq = bnb.functional.igemm(x8, weight8.t())
output = LinearFunction.dequant(outputq, S1, S2, x.dtype, args.quant_type)
#if torch.rand(1) < 0.01:
#output32 = torch.matmul(x, weight.t())
#err = torch.abs(output-output32).float()
#relerr = err/(torch.abs(output32).float()+1e-8)
#print(f'{err.mean().item():.4f}, {relerr.mean().item():.4f}', args.quant_type, 'forward', proxy)
# if torch.rand(1) < 0.01:
# output32 = torch.matmul(x, weight.t())
# err = torch.abs(output-output32).float()
# relerr = err/(torch.abs(output32).float()+1e-8)
# print(f'{err.mean().item():.4f}, {relerr.mean().item():.4f}', args.quant_type, 'forward', proxy)
else:
#output = torch.matmul(x, weight.t())
output = torch.einsum('bsi,oi->bso', x, weight)
# output = torch.matmul(x, weight.t())
output = torch.einsum("bsi,oi->bso", x, weight)
ctx.save_for_backward(x, weight, bias)
ctx.args = args
@ -221,37 +232,49 @@ class LinearFunction(torch.autograd.Function):
args = ctx.args
stochastic = False
grad_input = grad_weight = grad_bias = None
if bias is not None and ctx.needs_input_grad[2]: grad_bias = grad_output.sum(0)
if bias is not None and ctx.needs_input_grad[2]:
grad_bias = grad_output.sum(0)
# weight and x are already 8bit
# -> transform grad_output to 8-bit
if args.use_8bit_training == 'forward+wgrad':
grad_output8, S1 = LinearFunction.quant(grad_output, args.quant_type, dim=[0, 1])
if args.use_8bit_training == "forward+wgrad":
grad_output8, S1 = LinearFunction.quant(
grad_output, args.quant_type, dim=[0, 1]
)
x8, S2 = LinearFunction.quant(x, args.quant_type, dim=[0, 1])
grad_weight8 = bnb.functional.igemm(grad_output8, x8)
grad_weight = LinearFunction.dequant(grad_weight8, S1, S2, grad_output.dtype, args.quant_type)
grad_weight = LinearFunction.dequant(
grad_weight8, S1, S2, grad_output.dtype, args.quant_type
)
#grad_weight32 = torch.einsum('bso,bsi->oi', grad_output, x)
# grad_weight32 = torch.einsum('bso,bsi->oi', grad_output, x)
grad_input = grad_output.matmul(weight)
elif args.use_8bit_training == 'full':
grad_output8, S1 = LinearFunction.quant(grad_output, args.quant_type, dim=[0, 1])
elif args.use_8bit_training == "full":
grad_output8, S1 = LinearFunction.quant(
grad_output, args.quant_type, dim=[0, 1]
)
x8, S2 = LinearFunction.quant(x, args.quant_type, dim=[0, 1])
grad_weight8 = torch.zeros_like(weight, dtype=torch.int32)
bnb.functional.igemm(grad_output8, x8, out=grad_weight8)
grad_weight = LinearFunction.dequant(grad_weight8, S1, S2, grad_output.dtype, args.quant_type)
grad_weight = LinearFunction.dequant(
grad_weight8, S1, S2, grad_output.dtype, args.quant_type
)
grad_output8, S1 = LinearFunction.quant(grad_output, args.quant_type, dim=2)
weight8, S3 = LinearFunction.quant(weight, args.quant_type, dim=0)
grad_input8 = bnb.functional.igemm(grad_output8, weight8)
grad_input = LinearFunction.dequant(grad_input8, S1, S3, grad_output.dtype, args.quant_type)
grad_input = LinearFunction.dequant(
grad_input8, S1, S3, grad_output.dtype, args.quant_type
)
else:
grad_input = grad_output.matmul(weight)
grad_weight = torch.einsum('bsi,bso->oi', x, grad_output)
grad_weight = torch.einsum("bsi,bso->oi", x, grad_output)
return grad_input, grad_weight, grad_bias, None
class Linear8bit(nn.Module):
def __init__(self, input_features, output_features, bias=True, args=None):
super(Linear8bit, self).__init__()
@ -263,7 +286,7 @@ class Linear8bit(nn.Module):
if bias:
self.bias = nn.Parameter(torch.empty(output_features))
else:
self.register_parameter('bias', None)
self.register_parameter("bias", None)
torch.nn.init.xavier_uniform_(self.weight)
if self.bias is not None:
@ -275,12 +298,11 @@ class Linear8bit(nn.Module):
return LinearFunction.apply(x, self.weight, self.bias, self.args)
def test_linear8bit():
l0 = torch.nn.Linear(32, 64).cuda().half()
l1 = bnb.nn.Linear8bit(32,64, args=get_args()).cuda().half()
l1 = bnb.nn.Linear8bit(32, 64, args=get_args()).cuda().half()
l2 = Linear8bit(32, 64, args=get_args()).cuda().half()
l3 = bnb.nn.Linear8bitLt(32,64).cuda().half()
l3 = bnb.nn.Linear8bitLt(32, 64).cuda().half()
l0.weight.data = l2.weight.data.clone()
l0.bias.data = l2.bias.data.clone()
@ -292,8 +314,8 @@ def test_linear8bit():
l3.bias.data = l2.bias.data.clone()
for i in range(100):
b1 = torch.randn(16, 8, 32, device='cuda').half()
t = torch.randn(16, 8, 64, device='cuda').half()
b1 = torch.randn(16, 8, 32, device="cuda").half()
t = torch.randn(16, 8, 64, device="cuda").half()
b2 = b1.clone()
b3 = b1.clone()
b0 = b1.clone()
@ -318,16 +340,20 @@ def test_linear8bit():
assert_all_approx_close(l1.bias.grad, l2.bias.grad, atol=0.01, rtol=0, count=2)
assert_all_approx_close(l3.bias.grad, l2.bias.grad, atol=0.01, rtol=0, count=2)
assert_all_approx_close(l1.weight.grad, l2.weight.grad, atol=0.013, rtol=0.05, count=2)
assert_all_approx_close(l3.weight.grad, l2.weight.grad, atol=0.013, rtol=0.05, count=2)
assert_all_approx_close(
l1.weight.grad, l2.weight.grad, atol=0.013, rtol=0.05, count=2
)
assert_all_approx_close(
l3.weight.grad, l2.weight.grad, atol=0.013, rtol=0.05, count=2
)
err1 = torch.abs(l0.weight.grad-l1.weight.grad).mean().item()
err2 = torch.abs(l0.weight.grad-l2.weight.grad).mean().item()
err3 = torch.abs(l0.weight.grad-l3.weight.grad).mean().item()
err1 = torch.abs(l0.weight.grad - l1.weight.grad).mean().item()
err2 = torch.abs(l0.weight.grad - l2.weight.grad).mean().item()
err3 = torch.abs(l0.weight.grad - l3.weight.grad).mean().item()
assert err1*0.8 < err2
assert err2*0.8 < err3
assert err3*0.8 < err1
assert err1 * 0.8 < err2
assert err2 * 0.8 < err3
assert err3 * 0.8 < err1
l0.weight.grad = None
l1.weight.grad = None
@ -341,23 +367,28 @@ def test_linear8bit():
threshold = [0.0, 3.0]
values = threshold
names = ['threshold_{0}'.format(vals) for vals in values]
names = ["threshold_{0}".format(vals) for vals in values]
@pytest.mark.parametrize("threshold", values, ids=names)
def test_linear8bitlt_inference(threshold):
l1 = bnb.nn.Linear8bitLt(32,64, threshold=threshold).cuda().half()
assert l1.weight.device.type == 'cuda'
l1 = bnb.nn.Linear8bitLt(32, 64, threshold=threshold).cuda().half()
assert l1.weight.device.type == "cuda"
assert l1.weight.dtype == torch.float16
l1.eval()
for i in range(100):
b1 = torch.randn(16, 8, 32, device='cuda').half()
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = l1(b1)
if i == 1:
assert l1.state.CxB is not None
def test_linear8bitlt_accumulated_gradient():
l1 = torch.nn.Sequential(*[bnb.nn.Linear8bitLt(32,32).cuda().half() for i in range(2)])
l2 = torch.nn.Sequential(*[torch.nn.Linear(32,32).cuda().half() for i in range(2)])
l1 = torch.nn.Sequential(
*[bnb.nn.Linear8bitLt(32, 32).cuda().half() for i in range(2)]
)
l2 = torch.nn.Sequential(*[torch.nn.Linear(32, 32).cuda().half() for i in range(2)])
l2[0].weight = torch.nn.Parameter(l1[0].weight.clone())
l2[0].bias = torch.nn.Parameter(l1[0].bias.clone())
l2[1].weight = torch.nn.Parameter(l1[1].weight.clone())
@ -367,9 +398,8 @@ def test_linear8bitlt_accumulated_gradient():
acc_steps = 10
for i in range(10):
b1 = torch.randn(16, 8, 32, device='cuda').half()
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = l1(b1)
o2 = l2(b1)
loss1 = o1.mean()
@ -385,8 +415,12 @@ def test_linear8bitlt_accumulated_gradient():
opt1.zero_grad(True)
opt2.step()
opt2.zero_grad(True)
assert_all_approx_close(l1[0].weight, l2[0].weight, rtol=1.05, atol=0.01, count=2)
assert_all_approx_close(l1[1].weight, l2[1].weight, rtol=1.05, atol=0.01, count=2)
assert_all_approx_close(
l1[0].weight, l2[0].weight, rtol=1.05, atol=0.01, count=2
)
assert_all_approx_close(
l1[1].weight, l2[1].weight, rtol=1.05, atol=0.01, count=2
)
# we do this copy because otherwise we have small divergences over time that add up
l1[0].weight.data.copy_(l2[0].weight.data)
l1[1].weight.data.copy_(l2[1].weight.data)
@ -397,15 +431,21 @@ def test_linear8bitlt_accumulated_gradient():
threshold = [0.0, 2.0]
values = threshold
names = ['threshold_{0}'.format(vals) for vals in values]
names = ["threshold_{0}".format(vals) for vals in values]
@pytest.mark.parametrize("threshold", values, ids=names)
def test_linear8bitlt_no_fp16_weights(threshold):
l1 = bnb.nn.Linear8bitLt(32,64, threshold=threshold, has_fp16_weights=False).cuda().half()
l1 = (
bnb.nn.Linear8bitLt(32, 64, threshold=threshold, has_fp16_weights=False)
.cuda()
.half()
)
assert l1.weight.dtype == torch.int8
l1.eval()
for i in range(100):
b1 = torch.randn(16, 8, 32, device='cuda').half()
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = l1(b1)
assert o1.dtype == torch.float16
@ -414,57 +454,70 @@ def test_linear8bitlt_no_fp16_weights(threshold):
assert mlp.fc2.weight.dtype == torch.int8
for i in range(100):
b1 = torch.randn(16, 8, 32, device='cuda').half()
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = mlp(b1)
assert o1.dtype == torch.float16
if threshold > 0: assert mlp.fc1.state.idx is not None
if threshold > 0: assert mlp.fc2.state.idx is not None
if threshold > 0:
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
mlp = MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False).cuda().half()
assert mlp.fc1.weight.dtype == torch.int8
assert mlp.fc2.weight.dtype == torch.int8
for i in range(100):
b1 = torch.randn(16, 8, 32, device='cuda').half()
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = mlp(b1)
assert o1.dtype == torch.float16
if threshold > 0: assert mlp.fc1.state.idx is not None
if threshold > 0: assert mlp.fc2.state.idx is not None
if threshold > 0:
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
mlp = MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False).half().cuda()
for i in range(100):
b1 = torch.randn(16, 8, 32, device='cuda').half()
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = mlp(b1)
assert o1.dtype == torch.float16
if threshold > 0: assert mlp.fc1.state.idx is not None
if threshold > 0: assert mlp.fc2.state.idx is not None
if threshold > 0:
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
assert mlp.fc1.weight.dtype == torch.int8
assert mlp.fc2.weight.dtype == torch.int8
mlp = MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False).half().to('cuda')
mlp = MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False).half().to("cuda")
for i in range(100):
b1 = torch.randn(16, 8, 32, device='cuda').half()
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = mlp(b1)
assert o1.dtype == torch.float16
if threshold > 0: assert mlp.fc1.state.idx is not None
if threshold > 0: assert mlp.fc2.state.idx is not None
if threshold > 0:
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
assert mlp.fc1.weight.dtype == torch.int8
assert mlp.fc2.weight.dtype == torch.int8
assert mlp.fc1.weight.device.type == 'cuda'
assert mlp.fc2.weight.device.type == 'cuda'
assert mlp.fc1.weight.device.type == "cuda"
assert mlp.fc2.weight.device.type == "cuda"
mlp = MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False).to(torch.float16).to('cuda')
mlp = (
MLP8bit(32, 64, threshold=threshold, has_fp16_weights=False)
.to(torch.float16)
.to("cuda")
)
for i in range(100):
b1 = torch.randn(16, 8, 32, device='cuda').half()
b1 = torch.randn(16, 8, 32, device="cuda").half()
o1 = mlp(b1)
assert o1.dtype == torch.float16
if threshold > 0: assert mlp.fc1.state.idx is not None
if threshold > 0: assert mlp.fc2.state.idx is not None
if threshold > 0:
assert mlp.fc1.state.idx is not None
if threshold > 0:
assert mlp.fc2.state.idx is not None
assert mlp.fc1.weight.dtype == torch.int8
assert mlp.fc2.weight.dtype == torch.int8
assert mlp.fc1.weight.device.type == 'cuda'
assert mlp.fc2.weight.device.type == 'cuda'
assert mlp.fc1.weight.device.type == "cuda"
assert mlp.fc2.weight.device.type == "cuda"

View File

@ -1,81 +1,132 @@
import os
import time
import shutil
import uuid
import pytest
import ctypes
import os
import shutil
import time
import uuid
from itertools import product
from os.path import join
import pytest
import torch
import bitsandbytes as bnb
import bitsandbytes.functional as F
from os.path import join
from itertools import product
#import apex
# import apex
k = 20
def get_temp_dir():
path = '/tmp/autoswap/{0}'.format(str(uuid.uuid4()))
path = "/tmp/autoswap/{0}".format(str(uuid.uuid4()))
os.makedirs(path, exist_ok=True)
return path
def rm_path(path):
shutil.rmtree(path)
str2optimizers = {}
str2optimizers['adam_pytorch'] = (None, torch.optim.Adam, bnb.optim.Adam)
#str2optimizers['adam_apex'] = (None, apex.optimizers.FusedAdam, bnb.optim.Adam)
#str2optimizers['momentum_apex'] = (None, lambda pxx: apex.optimizers.FusedSGD(pxx, 0.01, 0.9), bnb.optim.Adam)
str2optimizers['momentum_pytorch'] = (None, lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), bnb.optim.Adam)
#str2optimizers['lamb_apex'] = (None, lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.00, use_nvlamb=True), bnb.optim.Adam)
#str2optimizers['lars_apex'] = (None, lambda pxx: apex.parallel.LARC.LARC(apex.optimizers.FusedSGD(pxx, 0.01, 0.9)), bnb.optim.Adam)
str2optimizers["adam_pytorch"] = (None, torch.optim.Adam, bnb.optim.Adam)
# str2optimizers['adam_apex'] = (None, apex.optimizers.FusedAdam, bnb.optim.Adam)
# str2optimizers['momentum_apex'] = (None, lambda pxx: apex.optimizers.FusedSGD(pxx, 0.01, 0.9), bnb.optim.Adam)
str2optimizers["momentum_pytorch"] = (
None,
lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9),
bnb.optim.Adam,
)
# str2optimizers['lamb_apex'] = (None, lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.00, use_nvlamb=True), bnb.optim.Adam)
# str2optimizers['lars_apex'] = (None, lambda pxx: apex.parallel.LARC.LARC(apex.optimizers.FusedSGD(pxx, 0.01, 0.9)), bnb.optim.Adam)
str2optimizers['adam'] = (torch.optim.Adam, bnb.optim.Adam)
#str2optimizers['fused_adam'] = (apex.optimizers.FusedAdam, bnb.optim.Adam)
str2optimizers['momentum'] = (lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD(pxx, 0.01, 0.9, block_wise=False))
str2optimizers['lars'] = (lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9), lambda pxx: bnb.optim.LARS(pxx, 0.01, 0.9))
#str2optimizers['lamb'] = (lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.0, max_grad_norm=10000.0, eps=1e-8, use_nvlamb=True), bnb.optim.LAMB)
str2optimizers['rmsprop'] = (lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop(pxx, 0.01, 0.9, block_wise=False))
str2optimizers['adam8bit'] = (torch.optim.Adam, lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=False))
str2optimizers['momentum8bit'] = (lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=False))
str2optimizers['rmsprop8bit'] = (lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=False))
#str2optimizers['lamb8bit'] = (lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.0, max_grad_norm=10000.0, eps=1e-8, use_nvlamb=True), bnb.optim.LAMB8bit)
str2optimizers['lars8bit'] = (lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9), lambda pxx: bnb.optim.LARS8bit(pxx, 0.01, 0.9))
str2optimizers["adam"] = (torch.optim.Adam, bnb.optim.Adam)
# str2optimizers['fused_adam'] = (apex.optimizers.FusedAdam, bnb.optim.Adam)
str2optimizers["momentum"] = (
lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.SGD(pxx, 0.01, 0.9, block_wise=False),
)
str2optimizers["lars"] = (
lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.LARS(pxx, 0.01, 0.9),
)
# str2optimizers['lamb'] = (lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.0, max_grad_norm=10000.0, eps=1e-8, use_nvlamb=True), bnb.optim.LAMB)
str2optimizers["rmsprop"] = (
lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.RMSprop(pxx, 0.01, 0.9, block_wise=False),
)
str2optimizers["adam8bit"] = (
torch.optim.Adam,
lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=False),
)
str2optimizers["momentum8bit"] = (
lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=False),
)
str2optimizers["rmsprop8bit"] = (
lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=False),
)
# str2optimizers['lamb8bit'] = (lambda pxx: apex.optimizers.FusedLAMB(pxx, weight_decay=0.0, max_grad_norm=10000.0, eps=1e-8, use_nvlamb=True), bnb.optim.LAMB8bit)
str2optimizers["lars8bit"] = (
lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.LARS8bit(pxx, 0.01, 0.9),
)
str2optimizers['adam8bit_blockwise'] = (torch.optim.Adam, lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=True))
str2optimizers['momentum8bit_blockwise'] = (lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9), lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=True))
str2optimizers['rmsprop8bit_blockwise'] = (lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9), lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=True))
str2optimizers["adam8bit_blockwise"] = (
torch.optim.Adam,
lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=True),
)
str2optimizers["momentum8bit_blockwise"] = (
lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=True),
)
str2optimizers["rmsprop8bit_blockwise"] = (
lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=True),
)
str2statenames = {}
str2statenames['adam'] = [('exp_avg', 'state1'), ('exp_avg_sq', 'state2')]
str2statenames['momentum'] = [('momentum_buffer', 'state1')]
str2statenames['lars'] = [('momentum_buffer', 'state1')]
str2statenames['lamb'] = [('exp_avg', 'state1'), ('exp_avg_sq', 'state2')]
str2statenames['rmsprop'] = [('square_avg', 'state1')]
str2statenames['adam8bit'] = [('exp_avg', 'state1', 'qmap1', 'max1'), ('exp_avg_sq', 'state2', 'qmap2', 'max2')]
str2statenames['lamb8bit'] = [('exp_avg', 'state1', 'qmap1', 'max1'), ('exp_avg_sq', 'state2', 'qmap2', 'max2')]
str2statenames['adam8bit_blockwise'] = [('exp_avg', 'state1', 'qmap1', 'absmax1'), ('exp_avg_sq', 'state2', 'qmap2', 'absmax2')]
str2statenames['momentum8bit'] = [('momentum_buffer', 'state1', 'qmap1', 'max1')]
str2statenames['momentum8bit_blockwise'] = [('momentum_buffer', 'state1', 'qmap1', 'absmax1')]
str2statenames['lars8bit'] = [('momentum_buffer', 'state1', 'qmap1', 'max1')]
str2statenames['rmsprop8bit'] = [('square_avg', 'state1', 'qmap1', 'max1')]
str2statenames['rmsprop8bit_blockwise'] = [('square_avg', 'state1', 'qmap1', 'absmax1')]
str2statenames["adam"] = [("exp_avg", "state1"), ("exp_avg_sq", "state2")]
str2statenames["momentum"] = [("momentum_buffer", "state1")]
str2statenames["lars"] = [("momentum_buffer", "state1")]
str2statenames["lamb"] = [("exp_avg", "state1"), ("exp_avg_sq", "state2")]
str2statenames["rmsprop"] = [("square_avg", "state1")]
str2statenames["adam8bit"] = [
("exp_avg", "state1", "qmap1", "max1"),
("exp_avg_sq", "state2", "qmap2", "max2"),
]
str2statenames["lamb8bit"] = [
("exp_avg", "state1", "qmap1", "max1"),
("exp_avg_sq", "state2", "qmap2", "max2"),
]
str2statenames["adam8bit_blockwise"] = [
("exp_avg", "state1", "qmap1", "absmax1"),
("exp_avg_sq", "state2", "qmap2", "absmax2"),
]
str2statenames["momentum8bit"] = [("momentum_buffer", "state1", "qmap1", "max1")]
str2statenames["momentum8bit_blockwise"] = [
("momentum_buffer", "state1", "qmap1", "absmax1")
]
str2statenames["lars8bit"] = [("momentum_buffer", "state1", "qmap1", "max1")]
str2statenames["rmsprop8bit"] = [("square_avg", "state1", "qmap1", "max1")]
str2statenames["rmsprop8bit_blockwise"] = [("square_avg", "state1", "qmap1", "absmax1")]
dim1 = [1024]
dim2 = [32, 1024, 4097, 1]
gtype = [torch.float32, torch.float16]
optimizer_names = ['adam', 'momentum', 'rmsprop', 'lars', 'lamb']
values = list(product(dim1,dim2, gtype, optimizer_names))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}'.format(*vals) for vals in values]
optimizer_names = ["adam", "momentum", "rmsprop", "lars", "lamb"]
values = list(product(dim1, dim2, gtype, optimizer_names))
names = ["dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer32bit(dim1, dim2, gtype, optim_name):
if dim1 == 1 and dim2 == 1: return
p1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1
if dim1 == 1 and dim2 == 1:
return
p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1
p2 = p1.clone()
p1 = p1.float()
torch_optimizer = str2optimizers[optim_name][0]([p1])
bnb_optimizer = str2optimizers[optim_name][1]([p2])
@ -84,9 +135,8 @@ def test_optimizer32bit(dim1, dim2, gtype, optim_name):
else:
atol, rtol = 1e-4, 1e-3
for i in range(k):
g = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.01
g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01
p1.grad = g.clone().float()
p2.grad = g.clone()
@ -94,21 +144,31 @@ def test_optimizer32bit(dim1, dim2, gtype, optim_name):
torch_optimizer.step()
for name1, name2 in str2statenames[optim_name]:
torch.testing.assert_allclose(torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol)
torch.testing.assert_allclose(
torch_optimizer.state[p1][name1],
bnb_optimizer.state[p2][name2],
atol=atol,
rtol=rtol,
)
torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)
if i % (k//5) == 0 and i > 0:
if i % (k // 5) == 0 and i > 0:
path = get_temp_dir()
torch.save(bnb_optimizer.state_dict(),join(path, 'opt.pt'))
torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt"))
del bnb_optimizer
bnb_optimizer = None
bnb_optimizer = str2optimizers[optim_name][1]([p2])
bnb_optimizer.load_state_dict(torch.load(join(path, 'opt.pt')))
bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt")))
rm_path(path)
torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)
for name1, name2 in str2statenames[optim_name]:
torch.testing.assert_allclose(torch_optimizer.state[p1][name1], bnb_optimizer.state[p2][name2], atol=atol, rtol=rtol)
torch.testing.assert_allclose(
torch_optimizer.state[p1][name1],
bnb_optimizer.state[p2][name2],
atol=atol,
rtol=rtol,
)
if gtype == torch.float16:
# the adam buffers should also be close because they are 32-bit
@ -118,20 +178,24 @@ def test_optimizer32bit(dim1, dim2, gtype, optim_name):
p1.data = p1.data.half().float()
p2.copy_(p1.data)
torch.testing.assert_allclose(p1.half(), p2)
if optim_name in ['lars', 'lamb']:
assert bnb_optimizer.state[p2]['unorm_vec'] > 0.0
if optim_name in ["lars", "lamb"]:
assert bnb_optimizer.state[p2]["unorm_vec"] > 0.0
dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32, torch.float16]
values = list(product(dim1,dim2, gtype))
names = ['dim1_{0}_dim2_{1}_gtype_{2}'.format(*vals) for vals in values]
values = list(product(dim1, dim2, gtype))
names = ["dim1_{0}_dim2_{1}_gtype_{2}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype", values, ids=names)
def test_global_config(dim1, dim2, gtype):
if dim1 == 1 and dim2 == 1: return
p1 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
p2 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
p3 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
if dim1 == 1 and dim2 == 1:
return
p1 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1
p2 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1
p3 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1
mask = torch.rand_like(p2) < 0.1
beta1 = 0.9
beta2 = 0.999
@ -139,7 +203,7 @@ def test_global_config(dim1, dim2, gtype):
eps = 1e-8
bnb.optim.GlobalOptimManager.get_instance().initialize()
bnb.optim.GlobalOptimManager.get_instance().override_config(p3, 'optim_bits', 8)
bnb.optim.GlobalOptimManager.get_instance().override_config(p3, "optim_bits", 8)
bnb.optim.GlobalOptimManager.get_instance().register_parameters([p1, p2, p3])
p1 = p1.cuda()
@ -154,30 +218,41 @@ def test_global_config(dim1, dim2, gtype):
atol, rtol = 1e-4, 1e-3
for i in range(50):
g1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
g2 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
g3 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + 0.001
g1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001
g2 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001
g3 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001
p1.grad = g1
p2.grad = g2
p3.grad = g3
adam2.step()
assert adam2.state[p3]['state1'].dtype == torch.uint8
assert adam2.state[p3]['state2'].dtype == torch.uint8
assert adam2.state[p3]["state1"].dtype == torch.uint8
assert adam2.state[p3]["state2"].dtype == torch.uint8
dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32, torch.float16]
optimizer_names = ['adam8bit', 'momentum8bit', 'rmsprop8bit', 'adam8bit_blockwise', 'lamb8bit', 'lars8bit', 'momentum8bit_blockwise', 'rmsprop8bit_blockwise']
values = list(product(dim1,dim2, gtype, optimizer_names))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}'.format(*vals) for vals in values]
optimizer_names = [
"adam8bit",
"momentum8bit",
"rmsprop8bit",
"adam8bit_blockwise",
"lamb8bit",
"lars8bit",
"momentum8bit_blockwise",
"rmsprop8bit_blockwise",
]
values = list(product(dim1, dim2, gtype, optimizer_names))
names = ["dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer8bit(dim1, dim2, gtype, optim_name):
if dim1 == 1 and dim2 == 1: return
p1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1
if dim1 == 1 and dim2 == 1:
return
p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1
p2 = p1.clone()
p1 = p1.float()
blocksize = 2048
@ -197,7 +272,7 @@ def test_optimizer8bit(dim1, dim2, gtype, optim_name):
relerrors = []
for i in range(50):
g = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.01
g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01
p1.grad = g.clone().float()
p2.grad = g.clone()
@ -208,17 +283,31 @@ def test_optimizer8bit(dim1, dim2, gtype, optim_name):
dequant_states = []
for name1, name2, qmap, max_val in str2statenames[optim_name]:
#print(bnb_optimizer.state[p2][max_val], name1)
if 'blockwise' in optim_name:
s1 = F.dequantize_blockwise(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize)
# print(bnb_optimizer.state[p2][max_val], name1)
if "blockwise" in optim_name:
s1 = F.dequantize_blockwise(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
blocksize=blocksize,
)
else:
s1 = F.dequantize(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2])
num_not_close = torch.isclose(torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol)==0
s1 = F.dequantize(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
)
num_not_close = (
torch.isclose(
torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol
)
== 0
)
assert num_not_close.sum().item() < 20
dequant_states.append(s1.clone())
err = torch.abs(p1-p2)
relerr = err/torch.abs(p1)
err = torch.abs(p1 - p2)
relerr = err / torch.abs(p1)
assert err.mean() < 0.0001
assert relerr.mean() < 0.001
@ -226,28 +315,44 @@ def test_optimizer8bit(dim1, dim2, gtype, optim_name):
relerrors.append(relerr.mean().item())
if i % 10 == 0 and i > 0:
for (name1, name2, qmap, max_val), s in zip(str2statenames[optim_name], dequant_states):
for (name1, name2, qmap, max_val), s in zip(
str2statenames[optim_name], dequant_states
):
s1cpy = s.clone()
raws1cpy = bnb_optimizer.state[p2][name2].clone()
qmap1 = bnb_optimizer.state[p2][qmap].clone()
path = get_temp_dir()
torch.save(bnb_optimizer.state_dict(),join(path, 'opt.pt'))
torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt"))
del bnb_optimizer
bnb_optimizer = None
bnb_optimizer = str2optimizers[optim_name][1]([p2])
bnb_optimizer.load_state_dict(torch.load(join(path, 'opt.pt')))
bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt")))
rm_path(path)
torch.testing.assert_allclose(raws1cpy, bnb_optimizer.state[p2][name2])
torch.testing.assert_allclose(qmap1, bnb_optimizer.state[p2][qmap])
if 'blockwise' in optim_name:
s1 = F.dequantize_blockwise(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2], blocksize=blocksize)
if "blockwise" in optim_name:
s1 = F.dequantize_blockwise(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
blocksize=blocksize,
)
else:
s1 = F.dequantize(code=bnb_optimizer.state[p2][qmap], absmax=bnb_optimizer.state[p2][max_val], A=bnb_optimizer.state[p2][name2])
s1 = F.dequantize(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
)
torch.testing.assert_allclose(s1cpy, s1)
num_not_close = torch.isclose(torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol)==0
num_not_close = (
torch.isclose(
torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol
)
== 0
)
assert num_not_close.sum().item() < 20
torch.testing.assert_allclose(p1, p2.float(), atol=patol, rtol=prtol)
@ -256,24 +361,28 @@ def test_optimizer8bit(dim1, dim2, gtype, optim_name):
p1.data = p1.data.to(gtype).float()
p2.copy_(p1.data)
torch.testing.assert_allclose(p1.to(gtype), p2)
for (name1, name2, qmap, max_val), s in zip(str2statenames[optim_name], dequant_states):
for (name1, name2, qmap, max_val), s in zip(
str2statenames[optim_name], dequant_states
):
torch_optimizer.state[p1][name1].copy_(s.data)
#print(sum(errors)/len(errors))
#print(sum(relerrors)/len(relerrors))
# print(sum(errors)/len(errors))
# print(sum(relerrors)/len(relerrors))
dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32]
optim_bits = [32, 8]
values = list(product(dim1,dim2, gtype, optim_bits))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_bits_{3}'.format(*vals) for vals in values]
values = list(product(dim1, dim2, gtype, optim_bits))
names = ["dim1_{0}_dim2_{1}_gtype_{2}_optim_bits_{3}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_bits", values, ids=names)
def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits):
if dim1 == 1 and dim2 == 1: return
p1 = torch.randn(dim1,dim2, device='cpu', dtype=gtype)*0.1
if dim1 == 1 and dim2 == 1:
return
p1 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1
beta1 = 0.9
beta2 = 0.999
lr = 0.001
@ -281,19 +390,23 @@ def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits):
p1 = p1.cuda()
p2 = p1.clone()
adam1 = bnb.optim.Adam([p1], lr, (beta1, beta2), eps, optim_bits=optim_bits)
adam2 = bnb.optim.Adam([p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5)
adam2 = bnb.optim.Adam(
[p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5
)
gnorm_vec = torch.zeros(100).cuda()
step = 0
for i in range(50):
step += 1
g1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1 + (0.01*i)
g1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + (0.01 * i)
g2 = g1.clone()
p2.grad = g2
current_gnorm, clip_val, gnorm_scale = F.percentile_clipping(g1, gnorm_vec, step, 5)
g1 = (g1.float()*gnorm_scale).to(gtype)
current_gnorm, clip_val, gnorm_scale = F.percentile_clipping(
g1, gnorm_vec, step, 5
)
g1 = (g1.float() * gnorm_scale).to(gtype)
p1.grad = g1
adam1.step()
@ -302,47 +415,69 @@ def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits):
# gnorm_scale is not deterministic (warp reductions), as such there can be slight differences in state
if optim_bits == 32:
torch.testing.assert_allclose(p1, p2)
torch.testing.assert_allclose(adam1.state[p1]['state1'], adam2.state[p2]['state1'], atol=5e-5, rtol=1e-4)
torch.testing.assert_allclose(adam1.state[p1]['state2'], adam2.state[p2]['state2'], atol=5e-5, rtol=1e-4)
torch.testing.assert_allclose(
adam1.state[p1]["state1"],
adam2.state[p2]["state1"],
atol=5e-5,
rtol=1e-4,
)
torch.testing.assert_allclose(
adam1.state[p1]["state2"],
adam2.state[p2]["state2"],
atol=5e-5,
rtol=1e-4,
)
elif optim_bits == 8:
torch.testing.assert_allclose(p1, p2, atol=1e-4, rtol=1e-3)
torch.testing.assert_allclose(adam1.state[p1]['state1'], adam2.state[p2]['state1'], atol=2, rtol=1e-3)
torch.testing.assert_allclose(adam1.state[p1]['state2'], adam2.state[p2]['state2'], atol=2, rtol=1e-3)
adam1.state[p1]['state1'].copy_(adam2.state[p2]['state1'])
adam1.state[p1]['state2'].copy_(adam2.state[p2]['state2'])
torch.testing.assert_allclose(
adam1.state[p1]["state1"], adam2.state[p2]["state1"], atol=2, rtol=1e-3
)
torch.testing.assert_allclose(
adam1.state[p1]["state2"], adam2.state[p2]["state2"], atol=2, rtol=1e-3
)
adam1.state[p1]["state1"].copy_(adam2.state[p2]["state1"])
adam1.state[p1]["state2"].copy_(adam2.state[p2]["state2"])
if i % 10 == 0 and i > 0:
path = get_temp_dir()
torch.save(adam2.state_dict(),join(path, 'opt.pt'))
torch.save(adam2.state_dict(), join(path, "opt.pt"))
del adam2
adam2 = None
adam2 = bnb.optim.Adam([p2], lr, (beta1, beta2), eps, optim_bits=optim_bits, percentile_clipping=5)
adam2.load_state_dict(torch.load(join(path, 'opt.pt')))
adam2 = bnb.optim.Adam(
[p2],
lr,
(beta1, beta2),
eps,
optim_bits=optim_bits,
percentile_clipping=5,
)
adam2.load_state_dict(torch.load(join(path, "opt.pt")))
dim1 = [4096]
dim2 = [4096]
gtype = [torch.float32, torch.float16]
#optimizer_names = ['adam8bit_blockwise', 'adam8bit', 'lamb8bit']
#optimizer_names = ['adam8bit_blockwise', 'adam_apex', 'adam8bit', 'adam', 'adam_pytorch']
#optimizer_names = ['momentum_apex', 'momentum8bit', 'momentum_pytorch']
#optimizer_names = ['lamb_apex', 'lamb8bit']
#optimizer_names = ['lars_apex', 'lars8bit']
optimizer_names = ['adam8bit_blockwise']
values = list(product(dim1,dim2, gtype, optimizer_names))
names = ['dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}'.format(*vals) for vals in values]
# optimizer_names = ['adam8bit_blockwise', 'adam8bit', 'lamb8bit']
# optimizer_names = ['adam8bit_blockwise', 'adam_apex', 'adam8bit', 'adam', 'adam_pytorch']
# optimizer_names = ['momentum_apex', 'momentum8bit', 'momentum_pytorch']
# optimizer_names = ['lamb_apex', 'lamb8bit']
# optimizer_names = ['lars_apex', 'lars8bit']
optimizer_names = ["adam8bit_blockwise"]
values = list(product(dim1, dim2, gtype, optimizer_names))
names = ["dim1_{0}_dim2_{1}_gtype_{2}_optim_{3}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_benchmark_blockwise(dim1, dim2, gtype, optim_name):
if dim1 == 1 and dim2 == 1: return
p1 = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.1
if dim1 == 1 and dim2 == 1:
return
p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1
bnb_optimizer = str2optimizers[optim_name][1]([p1])
g = torch.randn(dim1,dim2, device='cuda', dtype=gtype)*0.01
g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01
p1.grad = g
for i in range(k):
if i == k//5:
if i == k // 5:
# 100 iterations for burn-in
torch.cuda.synchronize()
t0 = time.time()
@ -350,10 +485,8 @@ def test_benchmark_blockwise(dim1, dim2, gtype, optim_name):
bnb_optimizer.step()
torch.cuda.synchronize()
s = time.time()-t0
print('')
params = (k-k//5)*dim1*dim2
print(optim_name, gtype, s/params)
#assert s < 3.9
s = time.time() - t0
print("")
params = (k - k // 5) * dim1 * dim2
print(optim_name, gtype, s / params)
# assert s < 3.9