# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from collections import abc as container_abcs from collections import defaultdict from copy import deepcopy from itertools import chain import torch import bitsandbytes.functional as F class MockArgs: def __init__(self, initial_data): for key in initial_data: setattr(self, key, initial_data[key]) class GlobalOptimManager: _instance = None def __init__(self): raise RuntimeError("Call get_instance() instead") def initialize(self): self.pid2config = {} self.index2config = {} self.optimizer = None self.uses_config_override = False self.module_weight_config_triple = [] @classmethod def get_instance(cls): if cls._instance is None: cls._instance = cls.__new__(cls) cls._instance.initialize() return cls._instance def register_parameters(self, params): param_groups = list(params) if not isinstance(param_groups[0], dict): param_groups = [{"params": param_groups}] for group_index, group in enumerate(param_groups): for p_index, p in enumerate(group["params"]): if id(p) in self.pid2config: self.index2config[(group_index, p_index)] = self.pid2config[ id(p) ] def override_config( self, parameters, key=None, value=None, key_value_dict=None ): """ Overrides initial optimizer config for specific parameters. The key-values of the optimizer config for the input parameters are overridden This can be both, optimizer parameters like "betas", or "lr" or it can be 8-bit specific parameters like "optim_bits", "percentile_clipping". Parameters ---------- parameters : torch.Tensor or list(torch.Tensors) The input parameters. key : str The hyperparamter to override. value : object The value for the hyperparamters. key_value_dict : dict A dictionary with multiple key-values to override. """ self.uses_config_override = True if isinstance(parameters, torch.nn.Parameter): parameters = [parameters] if isinstance(parameters, torch.Tensor): parameters = [parameters] if key is not None and value is not None: assert key_value_dict is None key_value_dict = {key: value} if key_value_dict is not None: for p in parameters: if id(p) in self.pid2config: self.pid2config[id(p)].update(key_value_dict) else: self.pid2config[id(p)] = key_value_dict def register_module_override(self, module, param_name, config): self.module_weight_config_triple.append((module, param_name, config)) class Optimizer8bit(torch.optim.Optimizer): def __init__(self, params, defaults, optim_bits=32): super().__init__(params, defaults) self.initialized = False self.name2qmap = {} self.mng = GlobalOptimManager.get_instance() self.non_castable_tensor_keys = { "qmap1", "qmap2", "max1", "max2", "new_max1", "new_max2", "state1", "state2", "gnorm_vec", "absmax1", "absmax2", "unorm_vec", } if optim_bits == 8: self.fill_qmap() def fill_qmap(self): self.name2qmap["dynamic"] = F.create_dynamic_map(signed=True) self.name2qmap["udynamic"] = F.create_dynamic_map(signed=False) def __setstate__(self, state): super().__setstate__(state) def load_state_dict(self, state_dict): r"""Loads the optimizer state. Args: state_dict (dict): optimizer state. Should be an object returned from a call to :meth:`state_dict`. """ # deepcopy, to be consistent with module API state_dict = deepcopy(state_dict) # Validate the state_dict groups = self.param_groups saved_groups = state_dict["param_groups"] if len(groups) != len(saved_groups): raise ValueError( "loaded state dict has a different number of " "parameter groups" ) param_lens = (len(g["params"]) for g in groups) saved_lens = (len(g["params"]) for g in saved_groups) if any(p_len != s_len for p_len, s_len in zip(param_lens, saved_lens)): raise ValueError( "loaded state dict contains a parameter group " "that doesn't match the size of optimizer's group" ) # Update the state id_map = { old_id: p for old_id, p in zip( chain.from_iterable(g["params"] for g in saved_groups), chain.from_iterable(g["params"] for g in groups), ) } def cast(param, value): r"""Make a deep copy of value, casting all tensors to device of param.""" if isinstance(value, torch.Tensor): # Floating-point types are a bit special here. They are the only ones # that are assumed to always match the type of params. if param.is_floating_point() and value.dtype != torch.uint8: value = value.to(param.dtype) return value elif isinstance(value, dict): for k, v in value.items(): if k in self.non_castable_tensor_keys: value[k] = v.to(param.device) else: value[k] = cast(param, v) return value elif isinstance(value, container_abcs.Iterable): return type(value)(cast(param, v) for v in value) else: return value # Copy state assigned to params (and cast tensors to appropriate types). # State that is not assigned to params is copied as is (needed for # backward compatibility). state = defaultdict(dict) for k, v in state_dict["state"].items(): if k in id_map: param = id_map[k] state[param] = cast(param, v) else: state[k] = v # Update parameter groups, setting their 'params' value def update_group(group, new_group): new_group["params"] = group["params"] return new_group param_groups = [ update_group(g, ng) for g, ng in zip(groups, saved_groups) ] self.__setstate__({"state": state, "param_groups": param_groups}) def to_gpu(self): for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p in self.state: values = self.state[p] for k, v in values.items(): if isinstance(v, torch.Tensor): self.state[p][k] = v.to(p.device) def check_overrides(self): for module, attr, config in self.mng.module_weight_config_triple: pmodule = getattr(module, attr) assert pmodule is not None assert isinstance(pmodule, torch.Tensor) or isinstance( pmodule, torch.Parameter ) found = False for gindex, group in enumerate(self.param_groups): if found: break for pindex, p in enumerate(group["params"]): if found: break if id(p) == id(pmodule): # found the matching parameter # init override self.mng.pid2config[id(p)] = config self.mng.index2config[ (gindex, pindex) ] = self.mng.pid2config[id(p)] found = True @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: with torch.enable_grad(): loss = closure() overflows = [] if not self.initialized: self.check_overrides() self.to_gpu() # needed for fairseq pure fp16 training self.initialized = True for gindex, group in enumerate(self.param_groups): for pindex, p in enumerate(group["params"]): if p.grad is None: continue state = self.state[p] if len(state) == 0: self.init_state(group, p, gindex, pindex) self.update_step(group, p, gindex, pindex) return loss def get_config(self, gindex, pindex, group): config = {} config["betas"] = group["betas"] config["eps"] = group["eps"] config["weight_decay"] = group["weight_decay"] config["lr"] = group["lr"] config["optim_bits"] = self.args.optim_bits config["min_8bit_size"] = self.args.min_8bit_size config["percentile_clipping"] = self.args.percentile_clipping config["block_wise"] = self.args.block_wise config["max_unorm"] = self.args.max_unorm config["skip_zeros"] = self.args.skip_zeros if (gindex, pindex) in self.mng.index2config: config.update(self.mng.index2config[(gindex, pindex)]) return config def init_state(self, group, p, gindex, pindex): raise NotImplementedError("init_state method needs to be overridden") def update_step(self, group, p, gindex, pindex): raise NotImplementedError( "The update_step method needs to be overridden" ) class Optimizer2State(Optimizer8bit): def __init__( self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if isinstance(betas, str): # format: '(beta1, beta2)' betas = betas.replace("(", "").replace(")", "").strip().split(",") betas = [float(b) for b in betas] for i in range(len(betas)): if not 0.0 <= betas[i] < 1.0: raise ValueError( f"Invalid beta parameter at index {i}: {betas[i]}" ) if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults, optim_bits) if args is None: args = {} args["optim_bits"] = optim_bits args["percentile_clipping"] = 100 args["min_8bit_size"] = min_8bit_size args["percentile_clipping"] = percentile_clipping args["block_wise"] = block_wise args["max_unorm"] = max_unorm args["skip_zeros"] = skip_zeros self.args = MockArgs(args) else: self.args = args self.optimizer_name = optimizer_name @torch.no_grad() def init_state(self, group, p, gindex, pindex): config = self.get_config(gindex, pindex, group) if config["optim_bits"] == 32: dtype = torch.float32 elif config["optim_bits"] == 8: dtype = torch.uint8 else: raise NotImplementedError( f'Amount of optimizer bits not supported: {config["optim_bits"]}' ) if p.numel() < config["min_8bit_size"]: dtype = torch.float32 state = self.state[p] state["step"] = 0 if dtype == torch.float32 or ( dtype == torch.uint8 and p.numel() < 4096 ): state["state1"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device, ) state["state2"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device, ) elif dtype == torch.uint8: if state["step"] == 0: if "dynamic" not in self.name2qmap: self.fill_qmap() self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to( p.device ) self.name2qmap["udynamic"] = self.name2qmap["udynamic"].to( p.device ) state["state1"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device, ) state["qmap1"] = self.name2qmap["dynamic"] state["state2"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device, ) state["qmap2"] = self.name2qmap["udynamic"] if config["block_wise"]: n = p.numel() blocks = n // 2048 blocks += 1 if n % 2048 > 0 else 0 state["absmax1"] = torch.zeros( (blocks,), dtype=torch.float32, device=p.device ) state["absmax2"] = torch.zeros( (blocks,), dtype=torch.float32, device=p.device ) else: state["max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["new_max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["max2"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["new_max2"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) @torch.no_grad() def update_step(self, group, p, gindex, pindex): state = self.state[p] grad = p.grad config = self.get_config(gindex, pindex, group) state["step"] += 1 step = state["step"] if config["percentile_clipping"] < 100: current_gnorm, clip_value, gnorm_scale = F.percentile_clipping( grad, state["gnorm_vec"], step, config["percentile_clipping"] ) else: gnorm_scale = 1.0 if state["state1"].dtype == torch.float: F.optimizer_update_32bit( self.optimizer_name, grad, p, state["state1"], config["betas"][0], config["eps"], step, config["lr"], state["state2"], config["betas"][1], config["weight_decay"], gnorm_scale, state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], skip_zeros=config["skip_zeros"], ) elif state["state1"].dtype == torch.uint8 and not config["block_wise"]: F.optimizer_update_8bit( self.optimizer_name, grad, p, state["state1"], state["state2"], config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], state["qmap2"], state["max1"], state["max2"], state["new_max1"], state["new_max2"], config["weight_decay"], gnorm_scale=gnorm_scale, unorm_vec=state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], ) # swap maxes state["max1"], state["new_max1"] = state["new_max1"], state["max1"] state["max2"], state["new_max2"] = state["new_max2"], state["max2"] elif state["state1"].dtype == torch.uint8 and config["block_wise"]: F.optimizer_update_8bit_blockwise( self.optimizer_name, grad, p, state["state1"], state["state2"], config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], state["qmap2"], state["absmax1"], state["absmax2"], config["weight_decay"], gnorm_scale=gnorm_scale, skip_zeros=config["skip_zeros"], ) class Optimizer1State(Optimizer8bit): def __init__( self, optimizer_name, params, lr=1e-3, betas=(0.9, 0.0), eps=1e-8, weight_decay=0.0, optim_bits=32, args=None, min_8bit_size=4096, percentile_clipping=100, block_wise=True, max_unorm=0.0, skip_zeros=False, ): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") for i in range(len(betas)): if not 0.0 <= betas[i] < 1.0: raise ValueError( f"Invalid beta parameter at index {i}: {betas[i]}" ) if not 0.0 <= weight_decay: raise ValueError( f"Invalid weight_decay value: {weight_decay}" ) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super().__init__(params, defaults, optim_bits) if args is None: args = {} args["optim_bits"] = optim_bits args["percentile_clipping"] = 100 args["min_8bit_size"] = min_8bit_size args["percentile_clipping"] = percentile_clipping args["block_wise"] = block_wise args["max_unorm"] = max_unorm args["skip_zeros"] = skip_zeros self.args = MockArgs(args) else: self.args = args self.optimizer_name = optimizer_name @torch.no_grad() def init_state(self, group, p, gindex, pindex): config = self.get_config(gindex, pindex, group) if config["optim_bits"] == 32: dtype = torch.float32 elif config["optim_bits"] == 8: dtype = torch.uint8 else: raise NotImplementedError( f'Amount of optimizer bits not supported: {config["optim_bits"]}' ) if p.numel() < config["min_8bit_size"]: dtype = torch.float32 state = self.state[p] state["step"] = 0 if dtype == torch.float32 or ( dtype == torch.uint8 and p.numel() < 4096 ): state["state1"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.float32, device=p.device, ) elif dtype == torch.uint8: if state["step"] == 0: if "dynamic" not in self.name2qmap: self.fill_qmap() self.name2qmap["dynamic"] = self.name2qmap["dynamic"].to( p.device ) state["state1"] = torch.zeros_like( p, memory_format=torch.preserve_format, dtype=torch.uint8, device=p.device, ) state["qmap1"] = self.name2qmap["dynamic"] if config["block_wise"]: n = p.numel() blocks = n // 2048 blocks += 1 if n % 2048 > 0 else 0 state["absmax1"] = torch.zeros( (blocks,), dtype=torch.float32, device=p.device ) else: state["max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) state["new_max1"] = torch.zeros( (1,), dtype=torch.float32, device=p.device ) if config["percentile_clipping"] < 100: state["gnorm_vec"] = torch.zeros((100,), device=p.device) if config["max_unorm"] > 0.0: state["unorm_vec"] = torch.zeros((1,), device=p.device) @torch.no_grad() def update_step(self, group, p, gindex, pindex): state = self.state[p] grad = p.grad config = self.get_config(gindex, pindex, group) state["step"] += 1 step = state["step"] if config["percentile_clipping"] < 100: current_gnorm, clip_value, gnorm_scale = F.percentile_clipping( grad, state["gnorm_vec"], step, config["percentile_clipping"] ) else: gnorm_scale = 1.0 if state["state1"].dtype == torch.float: F.optimizer_update_32bit( self.optimizer_name, grad, p, state["state1"], config["betas"][0], config["eps"], step, config["lr"], None, 0.0, config["weight_decay"], gnorm_scale, state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], skip_zeros=config["skip_zeros"], ) elif state["state1"].dtype == torch.uint8 and not config["block_wise"]: F.optimizer_update_8bit( self.optimizer_name, grad, p, state["state1"], None, config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], None, state["max1"], None, state["new_max1"], None, config["weight_decay"], gnorm_scale, state["unorm_vec"] if config["max_unorm"] > 0.0 else None, max_unorm=config["max_unorm"], ) state["max1"], state["new_max1"] = state["new_max1"], state["max1"] elif state["state1"].dtype == torch.uint8 and config["block_wise"]: F.optimizer_update_8bit_blockwise( self.optimizer_name, grad, p, state["state1"], None, config["betas"][0], config["betas"][1], config["eps"], step, config["lr"], state["qmap1"], None, state["absmax1"], None, config["weight_decay"], gnorm_scale=gnorm_scale, skip_zeros=config["skip_zeros"], )