import ctypes as ct from pathlib import Path from warnings import warn import torch class CUDASetup: _instance = None def __init__(self): raise RuntimeError("Call get_instance() instead") def generate_instructions(self): if self.cuda is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1): Your paths are probably not up-to-date. You can update them via: sudo ldconfig.') self.add_log_entry('CUDA SETUP: Solution 2): If you do not have sudo rights, you can do the following:') self.add_log_entry('CUDA SETUP: Solution 2a): Find the cuda library via: find / -name libcuda.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 2b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_2a') self.add_log_entry('CUDA SETUP: Solution 2c): For a permanent solution add the export from 2b into your .bashrc file, located at ~/.bashrc') return if self.cudart_path is None: self.add_log_entry('CUDA SETUP: Problem: The main issue seems to be that the main CUDA runtime library was not detected.') self.add_log_entry('CUDA SETUP: Solution 1: To solve the issue the libcudart.so location needs to be added to the LD_LIBRARY_PATH variable') self.add_log_entry('CUDA SETUP: Solution 1a): Find the cuda runtime library via: find / -name libcudart.so 2>/dev/null') self.add_log_entry('CUDA SETUP: Solution 1b): Once the library is found add it to the LD_LIBRARY_PATH: export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:FOUND_PATH_FROM_1a') self.add_log_entry('CUDA SETUP: Solution 1c): For a permanent solution add the export from 1b into your .bashrc file, located at ~/.bashrc') self.add_log_entry('CUDA SETUP: Solution 2: If no library was found in step 1a) you need to install CUDA.') self.add_log_entry('CUDA SETUP: Solution 2a): Download CUDA install script: wget https://github.com/TimDettmers/bitsandbytes/blob/main/cuda_install.sh') self.add_log_entry('CUDA SETUP: Solution 2b): Install desired CUDA version to desired location. The syntax is bash cuda_install.sh CUDA_VERSION PATH_TO_INSTALL_INTO.') self.add_log_entry('CUDA SETUP: Solution 2b): For example, "bash cuda_install.sh 113 ~/local/" will download CUDA 11.3 and install into the folder ~/local') return make_cmd = f'CUDA_VERSION={self.cuda_version_string}' if len(self.cuda_version_string) < 3: make_cmd += ' make cuda92' elif self.cuda_version_string == '110': make_cmd += ' make cuda110' elif self.cuda_version_string[:2] == '11' and int(self.cuda_version_string[2]) > 0: make_cmd += ' make cuda11x' has_cublaslt = self.cc in ["7.5", "8.0", "8.6"] if not has_cublaslt: make_cmd += '_nomatmul' self.add_log_entry('CUDA SETUP: Something unexpected happened. Please compile from source:') self.add_log_entry('git clone git@github.com:TimDettmers/bitsandbytes.git') self.add_log_entry('cd bitsandbytes') self.add_log_entry(make_cmd) self.add_log_entry('python setup.py install') def initialize(self): self.has_printed = False self.lib = None self.run_cuda_setup() def run_cuda_setup(self): self.initialized = True self.cuda_setup_log = [] from .cuda_setup.main import evaluate_cuda_setup binary_name, cudart_path, cuda, cc, cuda_version_string = evaluate_cuda_setup() self.cudart_path = cudart_path self.cuda = cuda self.cc = cc self.cuda_version_string = cuda_version_string package_dir = Path(__file__).parent binary_path = package_dir / binary_name try: if not binary_path.exists(): self.add_log_entry(f"CUDA SETUP: Required library version not found: {binary_name}. Maybe you need to compile it from source?") legacy_binary_name = "libbitsandbytes.so" self.add_log_entry(f"CUDA SETUP: Defaulting to {legacy_binary_name}...") binary_path = package_dir / legacy_binary_name if not binary_path.exists(): self.add_log_entry('') self.add_log_entry('='*48 + 'ERROR' + '='*37) self.add_log_entry('CUDA SETUP: CUDA detection failed! Possible reasons:') self.add_log_entry('1. CUDA driver not installed') self.add_log_entry('2. CUDA not installed') self.add_log_entry('3. You have multiple conflicting CUDA libraries') self.add_log_entry('4. Required library not pre-compiled for this bitsandbytes release!') self.add_log_entry('CUDA SETUP: If you compiled from source, try again with `make CUDA_VERSION=DETECTED_CUDA_VERSION` for example, `make CUDA_VERSION=113`.') self.add_log_entry('='*80) self.add_log_entry('') self.generate_instructions() self.print_log_stack() raise Exception('CUDA SETUP: Setup Failed!') self.lib = ct.cdll.LoadLibrary(binary_path) else: self.add_log_entry(f"CUDA SETUP: Loading binary {binary_path}...") self.lib = ct.cdll.LoadLibrary(binary_path) except Exception as ex: self.add_log_entry(str(ex)) self.print_log_stack() def add_log_entry(self, msg, is_warning=False): self.cuda_setup_log.append((msg, is_warning)) def print_log_stack(self): for msg, is_warning in self.cuda_setup_log: if is_warning: warn(msg) else: print(msg) @classmethod def get_instance(cls): if cls._instance is None: cls._instance = cls.__new__(cls) cls._instance.initialize() return cls._instance lib = CUDASetup.get_instance().lib try: if lib is None and torch.cuda.is_available(): CUDASetup.get_instance().generate_instructions() CUDASetup.get_instance().print_log_stack() raise RuntimeError(''' CUDA Setup failed despite GPU being available. Inspect the CUDA SETUP outputs above to fix your environment! If you cannot find any issues and suspect a bug, please open an issue with detals about your environment: https://github.com/TimDettmers/bitsandbytes/issues''') lib.cadam32bit_g32 lib.get_context.restype = ct.c_void_p lib.get_cusparse.restype = ct.c_void_p COMPILED_WITH_CUDA = True except AttributeError: warn("The installed version of bitsandbytes was compiled without GPU support. " "8-bit optimizers and GPU quantization are unavailable.") COMPILED_WITH_CUDA = False