bitsandbytes-rocm/tests/test_optim.py
Tom Aarsen 0b078403ee Simplify statements into equivalent, modern variants
via pyupgrade --py37-plus. The changes e.g. are subclassing from object, calling super() with super(ThisClass, self), or old-style syntax formatting.
2022-10-27 13:14:13 +02:00

526 lines
17 KiB
Python

import ctypes
import os
import shutil
import time
import uuid
from itertools import product
from os.path import join
import pytest
import torch
import bitsandbytes as bnb
import bitsandbytes.functional as F
# import apex
k = 20
def get_temp_dir():
path = f"/tmp/autoswap/{str(uuid.uuid4())}"
os.makedirs(path, exist_ok=True)
return path
def rm_path(path):
shutil.rmtree(path)
str2optimizers = {}
str2optimizers["adam_pytorch"] = (None, torch.optim.Adam, bnb.optim.Adam)
# str2optimizers['adam_apex'] = (None, apex.optimizers.FusedAdam, bnb.optim.Adam)
# str2optimizers['momentum_apex'] = (None, lambda pxx: apex.optimizers.FusedSGD(pxx, 0.01, 0.9), bnb.optim.Adam)
str2optimizers["momentum_pytorch"] = (
None,
lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9),
bnb.optim.Adam,
)
str2optimizers["adam"] = (torch.optim.Adam, bnb.optim.Adam)
# str2optimizers['fused_adam'] = (apex.optimizers.FusedAdam, bnb.optim.Adam)
str2optimizers["momentum"] = (
lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.SGD(pxx, 0.01, 0.9, block_wise=False),
)
str2optimizers["lars"] = (
lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.LARS(pxx, 0.01, 0.9),
)
str2optimizers["rmsprop"] = (
lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.RMSprop(pxx, 0.01, 0.9, block_wise=False),
)
str2optimizers["adam8bit"] = (
torch.optim.Adam,
lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=False),
)
str2optimizers["momentum8bit"] = (
lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=False),
)
str2optimizers["rmsprop8bit"] = (
lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=False),
)
str2optimizers["lars8bit"] = (
lambda pxx: bnb.optim.PytorchLARS(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.LARS8bit(pxx, 0.01, 0.9),
)
str2optimizers["adam8bit_blockwise"] = (
torch.optim.Adam,
lambda pxx: bnb.optim.Adam8bit(pxx, block_wise=True),
)
str2optimizers["momentum8bit_blockwise"] = (
lambda pxx: torch.optim.SGD(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.SGD8bit(pxx, 0.01, 0.9, block_wise=True),
)
str2optimizers["rmsprop8bit_blockwise"] = (
lambda pxx: torch.optim.RMSprop(pxx, 0.01, 0.9),
lambda pxx: bnb.optim.RMSprop8bit(pxx, 0.01, 0.9, block_wise=True),
)
str2statenames = {}
str2statenames["adam"] = [("exp_avg", "state1"), ("exp_avg_sq", "state2")]
str2statenames["momentum"] = [("momentum_buffer", "state1")]
str2statenames["lars"] = [("momentum_buffer", "state1")]
str2statenames["lamb"] = [("exp_avg", "state1"), ("exp_avg_sq", "state2")]
str2statenames["rmsprop"] = [("square_avg", "state1")]
str2statenames["adam8bit"] = [
("exp_avg", "state1", "qmap1", "max1"),
("exp_avg_sq", "state2", "qmap2", "max2"),
]
str2statenames["lamb8bit"] = [
("exp_avg", "state1", "qmap1", "max1"),
("exp_avg_sq", "state2", "qmap2", "max2"),
]
str2statenames["adam8bit_blockwise"] = [
("exp_avg", "state1", "qmap1", "absmax1"),
("exp_avg_sq", "state2", "qmap2", "absmax2"),
]
str2statenames["momentum8bit"] = [
("momentum_buffer", "state1", "qmap1", "max1")
]
str2statenames["momentum8bit_blockwise"] = [
("momentum_buffer", "state1", "qmap1", "absmax1")
]
str2statenames["lars8bit"] = [("momentum_buffer", "state1", "qmap1", "max1")]
str2statenames["rmsprop8bit"] = [("square_avg", "state1", "qmap1", "max1")]
str2statenames["rmsprop8bit_blockwise"] = [
("square_avg", "state1", "qmap1", "absmax1")
]
dim1 = [1024]
dim2 = [32, 1024, 4097, 1]
gtype = [torch.float32, torch.float16]
optimizer_names = ["adam", "momentum", "rmsprop", "lars"]
values = list(product(dim1, dim2, gtype, optimizer_names))
names = [
"dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values
]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer32bit(dim1, dim2, gtype, optim_name):
if dim1 == 1 and dim2 == 1:
return
p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1
p2 = p1.clone()
p1 = p1.float()
torch_optimizer = str2optimizers[optim_name][0]([p1])
bnb_optimizer = str2optimizers[optim_name][1]([p2])
if gtype == torch.float32:
atol, rtol = 1e-6, 1e-5
else:
atol, rtol = 1e-4, 1e-3
for i in range(k):
g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01
p1.grad = g.clone().float()
p2.grad = g.clone()
bnb_optimizer.step()
torch_optimizer.step()
for name1, name2 in str2statenames[optim_name]:
torch.testing.assert_allclose(
torch_optimizer.state[p1][name1],
bnb_optimizer.state[p2][name2],
atol=atol,
rtol=rtol,
)
torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)
if i % (k // 5) == 0 and i > 0:
path = get_temp_dir()
torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt"))
del bnb_optimizer
bnb_optimizer = None
bnb_optimizer = str2optimizers[optim_name][1]([p2])
bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt")))
rm_path(path)
torch.testing.assert_allclose(p1, p2.float(), atol=atol, rtol=rtol)
for name1, name2 in str2statenames[optim_name]:
torch.testing.assert_allclose(
torch_optimizer.state[p1][name1],
bnb_optimizer.state[p2][name2],
atol=atol,
rtol=rtol,
)
if gtype == torch.float16:
# the adam buffers should also be close because they are 32-bit
# but the paramters can diverge because they are 16-bit
# the difference grow larger and larger with each update
# --> copy the state to keep weights close
p1.data = p1.data.half().float()
p2.copy_(p1.data)
torch.testing.assert_allclose(p1.half(), p2)
if optim_name in ["lars", "lamb"]:
assert bnb_optimizer.state[p2]["unorm_vec"] > 0.0
dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32, torch.float16]
values = list(product(dim1, dim2, gtype))
names = ["dim1_{}_dim2_{}_gtype_{}".format(*vals) for vals in values]
@pytest.mark.parametrize("dim1, dim2, gtype", values, ids=names)
def test_global_config(dim1, dim2, gtype):
if dim1 == 1 and dim2 == 1:
return
p1 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1
p2 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1
p3 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1
mask = torch.rand_like(p2) < 0.1
beta1 = 0.9
beta2 = 0.999
lr = 0.001
eps = 1e-8
bnb.optim.GlobalOptimManager.get_instance().initialize()
bnb.optim.GlobalOptimManager.get_instance().override_config(
p3, "optim_bits", 8
)
bnb.optim.GlobalOptimManager.get_instance().register_parameters(
[p1, p2, p3]
)
p1 = p1.cuda()
p2 = p2.cuda()
p3 = p3.cuda()
adam2 = bnb.optim.Adam([p1, p2, p3], lr, (beta1, beta2), eps)
if gtype == torch.float32:
atol, rtol = 1e-6, 1e-5
else:
atol, rtol = 1e-4, 1e-3
for i in range(50):
g1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001
g2 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001
g3 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + 0.001
p1.grad = g1
p2.grad = g2
p3.grad = g3
adam2.step()
assert adam2.state[p3]["state1"].dtype == torch.uint8
assert adam2.state[p3]["state2"].dtype == torch.uint8
dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32, torch.float16]
optimizer_names = [
"adam8bit",
"momentum8bit",
"rmsprop8bit",
"adam8bit_blockwise",
"lars8bit",
"momentum8bit_blockwise",
"rmsprop8bit_blockwise",
]
values = list(product(dim1, dim2, gtype, optimizer_names))
names = [
"dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values
]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_optimizer8bit(dim1, dim2, gtype, optim_name):
if dim1 == 1 and dim2 == 1:
return
p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1
p2 = p1.clone()
p1 = p1.float()
blocksize = 2048
torch_optimizer = str2optimizers[optim_name][0]([p1])
bnb_optimizer = str2optimizers[optim_name][1]([p2])
if gtype == torch.float32:
atol, rtol = 3e-3, 1e-3
patol, prtol = 1e-5, 1e-3
else:
atol, rtol = 3e-3, 1e-3
patol, prtol = 1e-5, 1e-3
errors = []
relerrors = []
for i in range(50):
g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01
p1.grad = g.clone().float()
p2.grad = g.clone()
bnb_optimizer.step()
torch_optimizer.step()
torch.testing.assert_allclose(p1, p2.float(), atol=patol, rtol=prtol)
dequant_states = []
for name1, name2, qmap, max_val in str2statenames[optim_name]:
# print(bnb_optimizer.state[p2][max_val], name1)
if "blockwise" in optim_name:
s1 = F.dequantize_blockwise(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
blocksize=blocksize,
)
else:
s1 = F.dequantize(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
)
num_not_close = (
torch.isclose(
torch_optimizer.state[p1][name1], s1, atol=atol, rtol=rtol
)
== 0
)
assert num_not_close.sum().item() < 20
dequant_states.append(s1.clone())
err = torch.abs(p1 - p2)
relerr = err / torch.abs(p1)
assert err.mean() < 0.0001
assert relerr.mean() < 0.001
errors.append(err.mean().item())
relerrors.append(relerr.mean().item())
if i % 10 == 0 and i > 0:
for (name1, name2, qmap, max_val), s in zip(
str2statenames[optim_name], dequant_states
):
s1cpy = s.clone()
raws1cpy = bnb_optimizer.state[p2][name2].clone()
qmap1 = bnb_optimizer.state[p2][qmap].clone()
path = get_temp_dir()
torch.save(bnb_optimizer.state_dict(), join(path, "opt.pt"))
del bnb_optimizer
bnb_optimizer = None
bnb_optimizer = str2optimizers[optim_name][1]([p2])
bnb_optimizer.load_state_dict(torch.load(join(path, "opt.pt")))
rm_path(path)
torch.testing.assert_allclose(
raws1cpy, bnb_optimizer.state[p2][name2]
)
torch.testing.assert_allclose(
qmap1, bnb_optimizer.state[p2][qmap]
)
if "blockwise" in optim_name:
s1 = F.dequantize_blockwise(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
blocksize=blocksize,
)
else:
s1 = F.dequantize(
code=bnb_optimizer.state[p2][qmap],
absmax=bnb_optimizer.state[p2][max_val],
A=bnb_optimizer.state[p2][name2],
)
torch.testing.assert_allclose(s1cpy, s1)
num_not_close = (
torch.isclose(
torch_optimizer.state[p1][name1],
s1,
atol=atol,
rtol=rtol,
)
== 0
)
assert num_not_close.sum().item() < 20
torch.testing.assert_allclose(
p1, p2.float(), atol=patol, rtol=prtol
)
# the parameters diverge quickly. Here we keep them close
# together so we can test against the Adam error
p1.data = p1.data.to(gtype).float()
p2.copy_(p1.data)
torch.testing.assert_allclose(p1.to(gtype), p2)
for (name1, name2, qmap, max_val), s in zip(
str2statenames[optim_name], dequant_states
):
torch_optimizer.state[p1][name1].copy_(s.data)
# print(sum(errors)/len(errors))
# print(sum(relerrors)/len(relerrors))
dim1 = [1024]
dim2 = [32, 1024, 4097]
gtype = [torch.float32]
optim_bits = [32, 8]
values = list(product(dim1, dim2, gtype, optim_bits))
names = [
"dim1_{}_dim2_{}_gtype_{}_optim_bits_{}".format(*vals)
for vals in values
]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_bits", values, ids=names)
def test_adam_percentile_clipping(dim1, dim2, gtype, optim_bits):
if dim1 == 1 and dim2 == 1:
return
p1 = torch.randn(dim1, dim2, device="cpu", dtype=gtype) * 0.1
beta1 = 0.9
beta2 = 0.999
lr = 0.001
eps = 1e-8
p1 = p1.cuda()
p2 = p1.clone()
adam1 = bnb.optim.Adam([p1], lr, (beta1, beta2), eps, optim_bits=optim_bits)
adam2 = bnb.optim.Adam(
[p2],
lr,
(beta1, beta2),
eps,
optim_bits=optim_bits,
percentile_clipping=5,
)
gnorm_vec = torch.zeros(100).cuda()
step = 0
for i in range(50):
step += 1
g1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1 + (
0.01 * i
)
g2 = g1.clone()
p2.grad = g2
current_gnorm, clip_val, gnorm_scale = F.percentile_clipping(
g1, gnorm_vec, step, 5
)
g1 = (g1.float() * gnorm_scale).to(gtype)
p1.grad = g1
adam1.step()
adam2.step()
# gnorm_scale is not deterministic (warp reductions), as such there can be slight differences in state
if optim_bits == 32:
torch.testing.assert_allclose(p1, p2)
torch.testing.assert_allclose(
adam1.state[p1]["state1"],
adam2.state[p2]["state1"],
atol=5e-5,
rtol=1e-4,
)
torch.testing.assert_allclose(
adam1.state[p1]["state2"],
adam2.state[p2]["state2"],
atol=5e-5,
rtol=1e-4,
)
elif optim_bits == 8:
torch.testing.assert_allclose(p1, p2, atol=1e-4, rtol=1e-3)
torch.testing.assert_allclose(
adam1.state[p1]["state1"],
adam2.state[p2]["state1"],
atol=2,
rtol=1e-3,
)
torch.testing.assert_allclose(
adam1.state[p1]["state2"],
adam2.state[p2]["state2"],
atol=2,
rtol=1e-3,
)
adam1.state[p1]["state1"].copy_(adam2.state[p2]["state1"])
adam1.state[p1]["state2"].copy_(adam2.state[p2]["state2"])
if i % 10 == 0 and i > 0:
path = get_temp_dir()
torch.save(adam2.state_dict(), join(path, "opt.pt"))
del adam2
adam2 = None
adam2 = bnb.optim.Adam(
[p2],
lr,
(beta1, beta2),
eps,
optim_bits=optim_bits,
percentile_clipping=5,
)
adam2.load_state_dict(torch.load(join(path, "opt.pt")))
dim1 = [4096]
dim2 = [4096]
gtype = [torch.float32, torch.float16]
# optimizer_names = ['adam8bit_blockwise', 'adam8bit', 'lamb8bit']
# optimizer_names = ['adam8bit_blockwise', 'adam_apex', 'adam8bit', 'adam', 'adam_pytorch']
# optimizer_names = ['momentum_apex', 'momentum8bit', 'momentum_pytorch']
# optimizer_names = ['lamb_apex', 'lamb8bit']
# optimizer_names = ['lars_apex', 'lars8bit']
optimizer_names = ["adam8bit_blockwise"]
values = list(product(dim1, dim2, gtype, optimizer_names))
names = [
"dim1_{}_dim2_{}_gtype_{}_optim_{}".format(*vals) for vals in values
]
@pytest.mark.parametrize("dim1, dim2, gtype, optim_name", values, ids=names)
def test_benchmark_blockwise(dim1, dim2, gtype, optim_name):
if dim1 == 1 and dim2 == 1:
return
p1 = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.1
bnb_optimizer = str2optimizers[optim_name][1]([p1])
g = torch.randn(dim1, dim2, device="cuda", dtype=gtype) * 0.01
p1.grad = g
for i in range(k):
if i == k // 5:
# 100 iterations for burn-in
torch.cuda.synchronize()
t0 = time.time()
bnb_optimizer.step()
torch.cuda.synchronize()
s = time.time() - t0
print("")
params = (k - k // 5) * dim1 * dim2
print(optim_name, gtype, s / params)
# assert s < 3.9