ai-voice-cloning/src/webui.py

865 lines
33 KiB
Python
Raw Normal View History

2023-02-17 00:08:27 +00:00
import os
import argparse
import time
import json
import base64
import re
import inspect
2023-02-17 00:08:27 +00:00
import urllib.request
import torch
import torchaudio
import music_tag
import gradio as gr
import gradio.utils
from datetime import datetime
import tortoise.api
from tortoise.utils.audio import get_voice_dir, get_voices
from tortoise.utils.device import get_device_count
2023-02-17 00:08:27 +00:00
from utils import *
args = setup_args()
GENERATE_SETTINGS = {}
TRANSCRIBE_SETTINGS = {}
EXEC_SETTINGS = {}
TRAINING_SETTINGS = {}
2023-03-09 18:34:52 +00:00
GENERATE_SETTINGS_ARGS = []
PRESETS = {
'Ultra Fast': {'num_autoregressive_samples': 16, 'diffusion_iterations': 30, 'cond_free': False},
'Fast': {'num_autoregressive_samples': 96, 'diffusion_iterations': 80},
'Standard': {'num_autoregressive_samples': 256, 'diffusion_iterations': 200},
'High Quality': {'num_autoregressive_samples': 256, 'diffusion_iterations': 400},
}
HISTORY_HEADERS = {
"Name": "",
"Samples": "num_autoregressive_samples",
"Iterations": "diffusion_iterations",
"Temp.": "temperature",
"Sampler": "diffusion_sampler",
"CVVP": "cvvp_weight",
"Top P": "top_p",
"Diff. Temp.": "diffusion_temperature",
"Len Pen": "length_penalty",
"Rep Pen": "repetition_penalty",
"Cond-Free K": "cond_free_k",
"Time": "time",
"Datetime": "datetime",
"Model": "model",
"Model Hash": "model_hash",
}
# can't use *args OR **kwargs if I want to retain the ability to use progress
def generate_proxy(
2023-02-17 03:05:27 +00:00
text,
delimiter,
emotion,
prompt,
voice,
mic_audio,
voice_latents_chunks,
candidates,
seed,
2023-02-17 03:05:27 +00:00
num_autoregressive_samples,
diffusion_iterations,
temperature,
diffusion_sampler,
breathing_room,
cvvp_weight,
top_p,
diffusion_temperature,
length_penalty,
repetition_penalty,
cond_free_k,
experimentals,
2023-02-17 03:05:27 +00:00
progress=gr.Progress(track_tqdm=True)
):
kwargs = locals()
2023-02-23 13:18:51 +00:00
2023-02-17 03:05:27 +00:00
try:
sample, outputs, stats = generate(**kwargs)
2023-02-17 03:05:27 +00:00
except Exception as e:
message = str(e)
if message == "Kill signal detected":
unload_tts()
2023-02-17 03:05:27 +00:00
raise e
2023-02-17 03:05:27 +00:00
return (
outputs[0],
gr.update(value=sample, visible=sample is not None),
gr.update(choices=outputs, value=outputs[0], visible=len(outputs) > 1, interactive=True),
gr.update(value=stats, visible=True),
)
2023-02-17 00:08:27 +00:00
def update_presets(value):
if value in PRESETS:
preset = PRESETS[value]
return (gr.update(value=preset['num_autoregressive_samples']), gr.update(value=preset['diffusion_iterations']))
else:
return (gr.update(), gr.update())
def get_training_configs():
configs = []
for i, file in enumerate(sorted(os.listdir(f"./training/"))):
if file[-5:] != ".yaml" or file[0] == ".":
continue
configs.append(f"./training/{file}")
return configs
def update_training_configs():
return gr.update(choices=get_training_list())
def history_view_results( voice ):
results = []
files = []
outdir = f"{args.results_folder}/{voice}/"
for i, file in enumerate(sorted(os.listdir(outdir))):
if file[-4:] != ".wav":
continue
metadata, _ = read_generate_settings(f"{outdir}/{file}", read_latents=False)
if metadata is None:
continue
values = []
for k in HISTORY_HEADERS:
v = file
if k != "Name":
v = metadata[HISTORY_HEADERS[k]] if HISTORY_HEADERS[k] in metadata else '?'
values.append(v)
files.append(file)
results.append(values)
return (
results,
gr.Dropdown.update(choices=sorted(files))
)
2023-03-09 18:34:52 +00:00
def import_generate_settings_proxy( file=None ):
global GENERATE_SETTINGS_ARGS
settings = import_generate_settings( file )
res = []
for k in GENERATE_SETTINGS_ARGS:
res.append(settings[k] if k in settings else None)
2023-03-09 18:34:52 +00:00
return tuple(res)
2023-03-14 18:46:20 +00:00
def reset_generate_settings_proxy():
2023-03-14 17:42:42 +00:00
global GENERATE_SETTINGS_ARGS
2023-03-14 18:46:20 +00:00
settings = reset_generate_settings()
2023-03-14 17:42:42 +00:00
res = []
for k in GENERATE_SETTINGS_ARGS:
res.append(settings[k] if k in settings else None)
return tuple(res)
def compute_latents_proxy(voice, voice_latents_chunks, progress=gr.Progress(track_tqdm=True)):
compute_latents( voice=voice, voice_latents_chunks=voice_latents_chunks, progress=progress )
return voice
def import_voices_proxy(files, name, progress=gr.Progress(track_tqdm=True)):
import_voices(files, name, progress)
return gr.update()
def read_generate_settings_proxy(file, saveAs='.temp'):
j, latents = read_generate_settings(file)
if latents:
outdir = f'{get_voice_dir()}/{saveAs}/'
os.makedirs(outdir, exist_ok=True)
with open(f'{outdir}/cond_latents.pth', 'wb') as f:
f.write(latents)
latents = f'{outdir}/cond_latents.pth'
return (
gr.update(value=j, visible=j is not None),
gr.update(value=latents, visible=latents is not None),
None if j is None else j['voice'],
gr.update(visible=j is not None),
)
2023-03-21 20:31:01 +00:00
def slice_dataset_proxy( voice, trim_silence, start_offset, end_offset, progress=gr.Progress(track_tqdm=True) ):
return slice_dataset( voice, trim_silence=trim_silence, start_offset=start_offset, end_offset=end_offset, results=None, progress=progress )
def prepare_dataset_proxy( voice, language, validation_text_length, validation_audio_length, skip_existings, slice_audio, trim_silence, slice_start_offset, slice_end_offset, progress=gr.Progress(track_tqdm=False) ):
2023-03-09 06:20:05 +00:00
messages = []
message = transcribe_dataset( voice=voice, language=language, skip_existings=skip_existings, progress=progress )
2023-03-09 06:20:05 +00:00
messages.append(message)
if slice_audio:
message = slice_dataset( voice, trim_silence=trim_silence, start_offset=slice_start_offset, end_offset=slice_end_offset, results=None, progress=progress )
messages.append(message)
2023-03-16 14:19:56 +00:00
message = prepare_dataset( voice, use_segments=slice_audio, text_length=validation_text_length, audio_length=validation_audio_length, progress=progress )
messages.append(message)
2023-03-09 06:20:05 +00:00
return "\n".join(messages)
def update_args_proxy( *args ):
kwargs = {}
keys = list(EXEC_SETTINGS.keys())
for i in range(len(args)):
k = keys[i]
v = args[i]
kwargs[k] = v
update_args(**kwargs)
def optimize_training_settings_proxy( *args ):
kwargs = {}
keys = list(TRAINING_SETTINGS.keys())
for i in range(len(args)):
k = keys[i]
v = args[i]
kwargs[k] = v
settings, messages = optimize_training_settings(**kwargs)
output = list(settings.values())
return output[:-1] + ["\n".join(messages)]
def import_training_settings_proxy( voice ):
messages = []
injson = f'./training/{voice}/train.json'
2023-03-09 02:25:32 +00:00
statedir = f'./training/{voice}/finetune/training_state/'
output = {}
try:
with open(injson, 'r', encoding="utf-8") as f:
settings = json.loads(f.read())
except:
messages.append(f"Error import /{voice}/train.json")
for k in TRAINING_SETTINGS:
output[k] = TRAINING_SETTINGS[k].value
output = list(output.values())
return output[:-1] + ["\n".join(messages)]
2023-02-28 22:13:21 +00:00
if os.path.isdir(statedir):
resumes = sorted([int(d[:-6]) for d in os.listdir(statedir) if d[-6:] == ".state" ])
if len(resumes) > 0:
settings['resume_state'] = f'{statedir}/{resumes[-1]}.state'
messages.append(f"Found most recent training state: {settings['resume_state']}")
output = {}
for k in TRAINING_SETTINGS:
if k not in settings:
2023-03-14 18:58:03 +00:00
output[k] = gr.update()
else:
output[k] = gr.update(value=settings[k])
2023-03-09 18:34:52 +00:00
output = list(output.values())
messages.append(f"Imported training settings: {injson}")
return output[:-1] + ["\n".join(messages)]
def save_training_settings_proxy( *args ):
kwargs = {}
keys = list(TRAINING_SETTINGS.keys())
for i in range(len(args)):
k = keys[i]
v = args[i]
kwargs[k] = v
settings, messages = save_training_settings(**kwargs)
return "\n".join(messages)
def update_voices():
return (
gr.Dropdown.update(choices=get_voice_list(append_defaults=True)),
gr.Dropdown.update(choices=get_voice_list()),
2023-03-19 22:03:41 +00:00
gr.Dropdown.update(choices=get_voice_list(args.results_folder)),
)
def history_copy_settings( voice, file ):
return import_generate_settings( f"{args.results_folder}/{voice}/{file}" )
2023-02-17 00:08:27 +00:00
def setup_gradio():
global args
global ui
2023-03-09 18:34:52 +00:00
2023-02-17 00:08:27 +00:00
if not args.share:
def noop(function, return_value=None):
def wrapped(*args, **kwargs):
return return_value
return wrapped
gradio.utils.version_check = noop(gradio.utils.version_check)
gradio.utils.initiated_analytics = noop(gradio.utils.initiated_analytics)
gradio.utils.launch_analytics = noop(gradio.utils.launch_analytics)
gradio.utils.integration_analytics = noop(gradio.utils.integration_analytics)
gradio.utils.error_analytics = noop(gradio.utils.error_analytics)
gradio.utils.log_feature_analytics = noop(gradio.utils.log_feature_analytics)
#gradio.utils.get_local_ip_address = noop(gradio.utils.get_local_ip_address, 'localhost')
if args.models_from_local_only:
os.environ['TRANSFORMERS_OFFLINE']='1'
voice_list_with_defaults = get_voice_list(append_defaults=True)
voice_list = get_voice_list()
2023-03-19 22:03:41 +00:00
result_voices = get_voice_list(args.results_folder)
autoregressive_models = get_autoregressive_models()
diffusion_models = get_diffusion_models()
tokenizer_jsons = get_tokenizer_jsons()
dataset_list = get_dataset_list()
training_list = get_training_list()
2023-03-09 18:34:52 +00:00
global GENERATE_SETTINGS_ARGS
GENERATE_SETTINGS_ARGS = list(inspect.signature(generate_proxy).parameters.keys())[:-1]
for i in range(len(GENERATE_SETTINGS_ARGS)):
arg = GENERATE_SETTINGS_ARGS[i]
GENERATE_SETTINGS[arg] = None
2023-02-17 00:08:27 +00:00
with gr.Blocks() as ui:
with gr.Tab("Generate"):
with gr.Row():
with gr.Column():
GENERATE_SETTINGS["text"] = gr.Textbox(lines=4, value="Your prompt here.", label="Input Prompt")
2023-02-17 00:08:27 +00:00
with gr.Row():
with gr.Column():
GENERATE_SETTINGS["delimiter"] = gr.Textbox(lines=1, label="Line Delimiter", placeholder="\\n")
2023-02-17 00:08:27 +00:00
GENERATE_SETTINGS["emotion"] = gr.Radio( ["Happy", "Sad", "Angry", "Disgusted", "Arrogant", "Custom", "None"], value="None", label="Emotion", type="value", interactive=True )
GENERATE_SETTINGS["prompt"] = gr.Textbox(lines=1, label="Custom Emotion", visible=False)
GENERATE_SETTINGS["voice"] = gr.Dropdown(choices=voice_list_with_defaults, label="Voice", type="value", value=voice_list_with_defaults[0]) # it'd be very cash money if gradio was able to default to the first value in the list without this shit
GENERATE_SETTINGS["mic_audio"] = gr.Audio( label="Microphone Source", source="microphone", type="filepath", visible=False )
GENERATE_SETTINGS["voice_latents_chunks"] = gr.Number(label="Voice Chunks", precision=0, value=0)
with gr.Row():
refresh_voices = gr.Button(value="Refresh Voice List")
recompute_voice_latents = gr.Button(value="(Re)Compute Voice Latents")
GENERATE_SETTINGS["voice"].change(
fn=update_baseline_for_latents_chunks,
inputs=GENERATE_SETTINGS["voice"],
outputs=GENERATE_SETTINGS["voice_latents_chunks"]
)
GENERATE_SETTINGS["voice"].change(
fn=lambda value: gr.update(visible=value == "microphone"),
inputs=GENERATE_SETTINGS["voice"],
outputs=GENERATE_SETTINGS["mic_audio"],
)
2023-02-17 00:08:27 +00:00
with gr.Column():
GENERATE_SETTINGS["candidates"] = gr.Slider(value=1, minimum=1, maximum=6, step=1, label="Candidates")
GENERATE_SETTINGS["seed"] = gr.Number(value=0, precision=0, label="Seed")
2023-02-17 00:08:27 +00:00
preset = gr.Radio( ["Ultra Fast", "Fast", "Standard", "High Quality"], label="Preset", type="value" )
2023-02-17 00:08:27 +00:00
GENERATE_SETTINGS["num_autoregressive_samples"] = gr.Slider(value=16, minimum=2, maximum=512, step=1, label="Samples")
GENERATE_SETTINGS["diffusion_iterations"] = gr.Slider(value=30, minimum=0, maximum=512, step=1, label="Iterations")
GENERATE_SETTINGS["temperature"] = gr.Slider(value=0.2, minimum=0, maximum=1, step=0.1, label="Temperature")
2023-02-17 00:08:27 +00:00
show_experimental_settings = gr.Checkbox(label="Show Experimental Settings")
2023-03-14 18:46:20 +00:00
reset_generate_settings_button = gr.Button(value="Reset to Default")
2023-02-17 00:08:27 +00:00
with gr.Column(visible=False) as col:
experimental_column = col
GENERATE_SETTINGS["experimentals"] = gr.CheckboxGroup(["Half Precision", "Conditioning-Free"], value=["Conditioning-Free"], label="Experimental Flags")
GENERATE_SETTINGS["breathing_room"] = gr.Slider(value=8, minimum=1, maximum=32, step=1, label="Pause Size")
GENERATE_SETTINGS["diffusion_sampler"] = gr.Radio(
["P", "DDIM"], # + ["K_Euler_A", "DPM++2M"],
value="DDIM", label="Diffusion Samplers", type="value"
)
GENERATE_SETTINGS["cvvp_weight"] = gr.Slider(value=0, minimum=0, maximum=1, label="CVVP Weight")
GENERATE_SETTINGS["top_p"] = gr.Slider(value=0.8, minimum=0, maximum=1, label="Top P")
GENERATE_SETTINGS["diffusion_temperature"] = gr.Slider(value=1.0, minimum=0, maximum=1, label="Diffusion Temperature")
GENERATE_SETTINGS["length_penalty"] = gr.Slider(value=1.0, minimum=0, maximum=8, label="Length Penalty")
GENERATE_SETTINGS["repetition_penalty"] = gr.Slider(value=2.0, minimum=0, maximum=8, label="Repetition Penalty")
GENERATE_SETTINGS["cond_free_k"] = gr.Slider(value=2.0, minimum=0, maximum=4, label="Conditioning-Free K")
2023-02-17 00:08:27 +00:00
with gr.Column():
with gr.Row():
submit = gr.Button(value="Generate")
stop = gr.Button(value="Stop")
2023-02-17 00:08:27 +00:00
generation_results = gr.Dataframe(label="Results", headers=["Seed", "Time"], visible=False)
source_sample = gr.Audio(label="Source Sample", visible=False)
output_audio = gr.Audio(label="Output")
candidates_list = gr.Dropdown(label="Candidates", type="value", visible=False, choices=[""], value="")
def change_candidate( val ):
if not val:
return
return val
candidates_list.change(
fn=change_candidate,
inputs=candidates_list,
outputs=output_audio,
)
2023-02-17 00:08:27 +00:00
with gr.Tab("History"):
with gr.Row():
with gr.Column():
history_info = gr.Dataframe(label="Results", headers=list(HISTORY_HEADERS.keys()))
2023-02-17 00:08:27 +00:00
with gr.Row():
with gr.Column():
2023-02-22 03:27:28 +00:00
history_voices = gr.Dropdown(choices=result_voices, label="Voice", type="value", value=result_voices[0] if len(result_voices) > 0 else "")
2023-02-17 00:08:27 +00:00
with gr.Column():
history_results_list = gr.Dropdown(label="Results",type="value", interactive=True, value="")
2023-02-17 00:08:27 +00:00
with gr.Column():
history_audio = gr.Audio()
history_copy_settings_button = gr.Button(value="Copy Settings")
with gr.Tab("Utilities"):
with gr.Tab("Import / Analyze"):
with gr.Row():
with gr.Column():
audio_in = gr.Files(type="file", label="Audio Input", file_types=["audio"])
import_voice_name = gr.Textbox(label="Voice Name")
import_voice_button = gr.Button(value="Import Voice")
with gr.Column(visible=False) as col:
utilities_metadata_column = col
metadata_out = gr.JSON(label="Audio Metadata")
copy_button = gr.Button(value="Copy Settings")
latents_out = gr.File(type="binary", label="Voice Latents")
with gr.Tab("Tokenizer"):
with gr.Row():
text_tokenizier_input = gr.TextArea(label="Text", max_lines=4)
text_tokenizier_output = gr.TextArea(label="Tokenized Text", max_lines=4)
with gr.Row():
text_tokenizier_button = gr.Button(value="Tokenize Text")
2023-02-17 03:05:27 +00:00
with gr.Tab("Training"):
with gr.Tab("Prepare Dataset"):
2023-02-17 03:05:27 +00:00
with gr.Row():
with gr.Column():
2023-03-09 06:20:05 +00:00
DATASET_SETTINGS = {}
DATASET_SETTINGS['voice'] = gr.Dropdown( choices=voice_list, label="Dataset Source", type="value", value=voice_list[0] if len(voice_list) > 0 else "" )
with gr.Row():
DATASET_SETTINGS['language'] = gr.Textbox(label="Language", value="en")
DATASET_SETTINGS['validation_text_length'] = gr.Number(label="Validation Text Length Threshold", value=12, precision=0, visible=args.tts_backend=="tortoise")
DATASET_SETTINGS['validation_audio_length'] = gr.Number(label="Validation Audio Length Threshold", value=1, visible=args.tts_backend=="tortoise" )
with gr.Row():
DATASET_SETTINGS['skip'] = gr.Checkbox(label="Skip Existing", value=False)
DATASET_SETTINGS['slice'] = gr.Checkbox(label="Slice Segments", value=False)
DATASET_SETTINGS['trim_silence'] = gr.Checkbox(label="Trim Silence", value=False)
with gr.Row():
DATASET_SETTINGS['slice_start_offset'] = gr.Number(label="Slice Start Offset", value=0)
DATASET_SETTINGS['slice_end_offset'] = gr.Number(label="Slice End Offset", value=0)
2023-03-09 06:20:05 +00:00
transcribe_button = gr.Button(value="Transcribe and Process")
2023-03-09 06:20:05 +00:00
with gr.Row():
slice_dataset_button = gr.Button(value="(Re)Slice Audio")
prepare_dataset_button = gr.Button(value="(Re)Create Dataset")
2023-03-09 06:20:05 +00:00
with gr.Row():
EXEC_SETTINGS['whisper_backend'] = gr.Dropdown(WHISPER_BACKENDS, label="Whisper Backends", value=args.whisper_backend)
EXEC_SETTINGS['whisper_model'] = gr.Dropdown(WHISPER_MODELS, label="Whisper Model", value=args.whisper_model)
2023-03-09 06:20:05 +00:00
dataset_settings = list(DATASET_SETTINGS.values())
with gr.Column():
prepare_dataset_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8)
with gr.Tab("Generate Configuration"):
with gr.Row():
2023-02-17 03:05:27 +00:00
with gr.Column():
TRAINING_SETTINGS["epochs"] = gr.Number(label="Epochs", value=500, precision=0)
with gr.Row(visible=args.tts_backend=="tortoise"):
TRAINING_SETTINGS["learning_rate"] = gr.Slider(label="Learning Rate", value=1e-5, minimum=0, maximum=1e-4, step=1e-6)
TRAINING_SETTINGS["mel_lr_weight"] = gr.Slider(label="Mel LR Ratio", value=1.00, minimum=0, maximum=1)
TRAINING_SETTINGS["text_lr_weight"] = gr.Slider(label="Text LR Ratio", value=0.01, minimum=0, maximum=1)
with gr.Row(visible=args.tts_backend=="tortoise"):
lr_schemes = list(LEARNING_RATE_SCHEMES.keys())
TRAINING_SETTINGS["learning_rate_scheme"] = gr.Radio(lr_schemes, label="Learning Rate Scheme", value=lr_schemes[0], type="value")
TRAINING_SETTINGS["learning_rate_schedule"] = gr.Textbox(label="Learning Rate Schedule", placeholder=str(LEARNING_RATE_SCHEDULE), visible=True)
TRAINING_SETTINGS["learning_rate_restarts"] = gr.Number(label="Learning Rate Restarts", value=4, precision=0, visible=False)
TRAINING_SETTINGS["learning_rate_scheme"].change(
fn=lambda x: ( gr.update(visible=x == lr_schemes[0]), gr.update(visible=x == lr_schemes[1]) ),
inputs=TRAINING_SETTINGS["learning_rate_scheme"],
outputs=[
TRAINING_SETTINGS["learning_rate_schedule"],
TRAINING_SETTINGS["learning_rate_restarts"],
]
)
with gr.Row():
TRAINING_SETTINGS["batch_size"] = gr.Number(label="Batch Size", value=128, precision=0)
2023-03-20 01:22:53 +00:00
TRAINING_SETTINGS["gradient_accumulation_size"] = gr.Number(label="Gradient Accumulation Size", value=4, precision=0)
with gr.Row():
TRAINING_SETTINGS["save_rate"] = gr.Number(label="Save Frequency (in epochs)", value=5, precision=0)
TRAINING_SETTINGS["validation_rate"] = gr.Number(label="Validation Frequency (in epochs)", value=5, precision=0)
with gr.Row():
TRAINING_SETTINGS["half_p"] = gr.Checkbox(label="Half Precision", value=args.training_default_halfp, visible=args.tts_backend=="tortoise")
TRAINING_SETTINGS["bitsandbytes"] = gr.Checkbox(label="BitsAndBytes", value=args.training_default_bnb, visible=args.tts_backend=="tortoise")
TRAINING_SETTINGS["validation_enabled"] = gr.Checkbox(label="Validation Enabled", value=False)
with gr.Row():
TRAINING_SETTINGS["workers"] = gr.Number(label="Worker Processes", value=2, precision=0, visible=args.tts_backend=="tortoise")
TRAINING_SETTINGS["gpus"] = gr.Number(label="GPUs", value=get_device_count(), precision=0)
2023-03-09 02:25:32 +00:00
TRAINING_SETTINGS["source_model"] = gr.Dropdown( choices=autoregressive_models, label="Source Model", type="value", value=autoregressive_models[0], visible=args.tts_backend=="tortoise" )
TRAINING_SETTINGS["resume_state"] = gr.Textbox(label="Resume State Path", placeholder="./training/${voice}/finetune/training_state/${last_state}.state", visible=args.tts_backend=="tortoise")
TRAINING_SETTINGS["voice"] = gr.Dropdown( choices=dataset_list, label="Dataset", type="value", value=dataset_list[0] if len(dataset_list) else "" )
with gr.Row():
training_refresh_dataset = gr.Button(value="Refresh Dataset List")
training_import_settings = gr.Button(value="Reuse/Import Dataset")
with gr.Column():
training_configuration_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8)
with gr.Row():
training_optimize_configuration = gr.Button(value="Validate Training Configuration")
training_save_configuration = gr.Button(value="Save Training Configuration")
with gr.Tab("Run Training"):
with gr.Row():
with gr.Column():
training_configs = gr.Dropdown(label="Training Configuration", choices=training_list, value=training_list[0] if len(training_list) else "")
refresh_configs = gr.Button(value="Refresh Configurations")
training_output = gr.TextArea(label="Console Output", interactive=False, max_lines=8)
verbose_training = gr.Checkbox(label="Verbose Console Output", value=True)
2023-03-12 06:00:03 +00:00
keep_x_past_checkpoints = gr.Slider(label="Keep X Previous States", minimum=0, maximum=8, value=0, step=1)
with gr.Row():
start_training_button = gr.Button(value="Train")
stop_training_button = gr.Button(value="Stop")
reconnect_training_button = gr.Button(value="Reconnect")
with gr.Column():
training_loss_graph = gr.LinePlot(label="Training Metrics",
2023-03-12 14:47:48 +00:00
x="epoch",
y="value",
2023-03-12 14:47:48 +00:00
title="Loss Metrics",
2023-02-28 06:18:18 +00:00
color="type",
tooltip=['epoch', 'it', 'value', 'type'],
width=500,
height=350,
)
training_lr_graph = gr.LinePlot(label="Training Metrics",
2023-03-12 14:47:48 +00:00
x="epoch",
y="value",
2023-03-12 14:47:48 +00:00
title="Learning Rate",
color="type",
tooltip=['epoch', 'it', 'value', 'type'],
width=500,
height=350,
)
view_losses = gr.Button(value="View Losses")
2023-02-17 00:08:27 +00:00
with gr.Tab("Settings"):
with gr.Row():
exec_inputs = []
with gr.Column():
EXEC_SETTINGS['listen'] = gr.Textbox(label="Listen", value=args.listen, placeholder="127.0.0.1:7860/")
EXEC_SETTINGS['share'] = gr.Checkbox(label="Public Share Gradio", value=args.share)
EXEC_SETTINGS['check_for_updates'] = gr.Checkbox(label="Check For Updates", value=args.check_for_updates)
EXEC_SETTINGS['models_from_local_only'] = gr.Checkbox(label="Only Load Models Locally", value=args.models_from_local_only)
EXEC_SETTINGS['low_vram'] = gr.Checkbox(label="Low VRAM", value=args.low_vram)
EXEC_SETTINGS['embed_output_metadata'] = gr.Checkbox(label="Embed Output Metadata", value=args.embed_output_metadata)
EXEC_SETTINGS['latents_lean_and_mean'] = gr.Checkbox(label="Slimmer Computed Latents", value=args.latents_lean_and_mean)
EXEC_SETTINGS['voice_fixer'] = gr.Checkbox(label="Use Voice Fixer on Generated Output", value=args.voice_fixer)
EXEC_SETTINGS['voice_fixer_use_cuda'] = gr.Checkbox(label="Use CUDA for Voice Fixer", value=args.voice_fixer_use_cuda)
EXEC_SETTINGS['force_cpu_for_conditioning_latents'] = gr.Checkbox(label="Force CPU for Conditioning Latents", value=args.force_cpu_for_conditioning_latents)
EXEC_SETTINGS['defer_tts_load'] = gr.Checkbox(label="Do Not Load TTS On Startup", value=args.defer_tts_load)
EXEC_SETTINGS['prune_nonfinal_outputs'] = gr.Checkbox(label="Delete Non-Final Output", value=args.prune_nonfinal_outputs)
2023-02-17 00:08:27 +00:00
with gr.Column():
EXEC_SETTINGS['sample_batch_size'] = gr.Number(label="Sample Batch Size", precision=0, value=args.sample_batch_size)
EXEC_SETTINGS['unsqueeze_sample_batches'] = gr.Checkbox(label="Unsqueeze Sample Batches", value=args.unsqueeze_sample_batches)
EXEC_SETTINGS['concurrency_count'] = gr.Number(label="Gradio Concurrency Count", precision=0, value=args.concurrency_count)
EXEC_SETTINGS['autocalculate_voice_chunk_duration_size'] = gr.Number(label="Auto-Calculate Voice Chunk Duration (in seconds)", precision=0, value=args.autocalculate_voice_chunk_duration_size)
EXEC_SETTINGS['output_volume'] = gr.Slider(label="Output Volume", minimum=0, maximum=2, value=args.output_volume)
EXEC_SETTINGS['device_override'] = gr.Textbox(label="Device Override", value=args.device_override)
2023-03-19 22:03:41 +00:00
EXEC_SETTINGS['results_folder'] = gr.Textbox(label="Results Folder", value=args.results_folder)
with gr.Column():
2023-03-14 05:02:14 +00:00
# EXEC_SETTINGS['tts_backend'] = gr.Dropdown(TTSES, label="TTS Backend", value=args.tts_backend if args.tts_backend else TTSES[0])
EXEC_SETTINGS['autoregressive_model'] = gr.Dropdown(choices=autoregressive_models, label="Autoregressive Model", value=args.autoregressive_model if args.autoregressive_model else autoregressive_models[0])
EXEC_SETTINGS['diffusion_model'] = gr.Dropdown(choices=diffusion_models, label="Diffusion Model", value=args.diffusion_model if args.diffusion_model else diffusion_models[0])
EXEC_SETTINGS['vocoder_model'] = gr.Dropdown(VOCODERS, label="Vocoder", value=args.vocoder_model if args.vocoder_model else VOCODERS[-1])
EXEC_SETTINGS['tokenizer_json'] = gr.Dropdown(tokenizer_jsons, label="Tokenizer JSON Path", value=args.tokenizer_json if args.tokenizer_json else tokenizer_jsons[0])
EXEC_SETTINGS['training_default_halfp'] = TRAINING_SETTINGS['half_p']
EXEC_SETTINGS['training_default_bnb'] = TRAINING_SETTINGS['bitsandbytes']
2023-02-27 19:20:06 +00:00
with gr.Row():
autoregressive_models_update_button = gr.Button(value="Refresh Model List")
gr.Button(value="Check for Updates").click(check_for_updates)
gr.Button(value="(Re)Load TTS").click(
reload_tts,
inputs=None,
outputs=None
)
# kill_button = gr.Button(value="Close UI")
def update_model_list_proxy( autoregressive, diffusion, tokenizer ):
autoregressive_models = get_autoregressive_models()
if autoregressive not in autoregressive_models:
autoregressive = autoregressive_models[0]
diffusion_models = get_diffusion_models()
if diffusion not in diffusion_models:
diffusion = diffusion_models[0]
tokenizer_jsons = get_tokenizer_jsons()
if tokenizer not in tokenizer_jsons:
tokenizer = tokenizer_jsons[0]
return (
gr.update( choices=autoregressive_models, value=autoregressive ),
gr.update( choices=diffusion_models, value=diffusion ),
gr.update( choices=tokenizer_jsons, value=tokenizer ),
)
autoregressive_models_update_button.click(
update_model_list_proxy,
inputs=[
EXEC_SETTINGS['autoregressive_model'],
EXEC_SETTINGS['diffusion_model'],
EXEC_SETTINGS['tokenizer_json'],
],
outputs=[
EXEC_SETTINGS['autoregressive_model'],
EXEC_SETTINGS['diffusion_model'],
EXEC_SETTINGS['tokenizer_json'],
],
)
exec_inputs = list(EXEC_SETTINGS.values())
for k in EXEC_SETTINGS:
EXEC_SETTINGS[k].change( fn=update_args_proxy, inputs=exec_inputs )
2023-02-27 19:20:06 +00:00
EXEC_SETTINGS['autoregressive_model'].change(
2023-02-27 19:20:06 +00:00
fn=update_autoregressive_model,
inputs=EXEC_SETTINGS['autoregressive_model'],
2023-02-27 19:20:06 +00:00
outputs=None
)
2023-02-17 00:08:27 +00:00
EXEC_SETTINGS['vocoder_model'].change(
fn=update_vocoder_model,
inputs=EXEC_SETTINGS['vocoder_model'],
outputs=None
)
history_voices.change(
fn=history_view_results,
inputs=history_voices,
outputs=[
history_info,
history_results_list,
]
)
history_results_list.change(
fn=lambda voice, file: f"{args.results_folder}/{voice}/{file}",
inputs=[
history_voices,
history_results_list,
],
outputs=history_audio
)
audio_in.upload(
fn=read_generate_settings_proxy,
inputs=audio_in,
outputs=[
metadata_out,
latents_out,
import_voice_name,
utilities_metadata_column,
]
)
import_voice_button.click(
fn=import_voices_proxy,
inputs=[
audio_in,
import_voice_name,
],
outputs=import_voice_name #console_output
)
show_experimental_settings.change(
fn=lambda x: gr.update(visible=x),
inputs=show_experimental_settings,
outputs=experimental_column
)
preset.change(fn=update_presets,
inputs=preset,
outputs=[
GENERATE_SETTINGS['num_autoregressive_samples'],
GENERATE_SETTINGS['diffusion_iterations'],
],
)
recompute_voice_latents.click(compute_latents_proxy,
inputs=[
GENERATE_SETTINGS['voice'],
GENERATE_SETTINGS['voice_latents_chunks'],
],
outputs=GENERATE_SETTINGS['voice'],
)
GENERATE_SETTINGS['emotion'].change(
fn=lambda value: gr.update(visible=value == "Custom"),
inputs=GENERATE_SETTINGS['emotion'],
outputs=GENERATE_SETTINGS['prompt']
)
GENERATE_SETTINGS['mic_audio'].change(fn=lambda value: gr.update(value="microphone"),
inputs=GENERATE_SETTINGS['mic_audio'],
outputs=GENERATE_SETTINGS['voice']
)
2023-02-17 00:08:27 +00:00
refresh_voices.click(update_voices,
inputs=None,
outputs=[
GENERATE_SETTINGS['voice'],
DATASET_SETTINGS['voice'],
2023-02-17 00:08:27 +00:00
history_voices
]
)
generate_settings = list(GENERATE_SETTINGS.values())
2023-02-17 00:08:27 +00:00
submit.click(
lambda: (gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)),
outputs=[source_sample, candidates_list, generation_results],
2023-02-17 00:08:27 +00:00
)
submit_event = submit.click(generate_proxy,
inputs=generate_settings,
outputs=[output_audio, source_sample, candidates_list, generation_results],
api_name="generate",
2023-02-17 00:08:27 +00:00
)
2023-03-09 18:34:52 +00:00
copy_button.click(import_generate_settings_proxy,
2023-02-17 00:08:27 +00:00
inputs=audio_in, # JSON elements cannot be used as inputs
outputs=generate_settings
2023-02-17 00:08:27 +00:00
)
2023-03-14 18:46:20 +00:00
reset_generate_settings_button.click(
fn=reset_generate_settings_proxy,
2023-02-17 00:08:27 +00:00
inputs=None,
outputs=generate_settings
2023-02-17 00:08:27 +00:00
)
history_copy_settings_button.click(history_copy_settings,
inputs=[
history_voices,
history_results_list,
],
outputs=generate_settings
2023-02-17 00:08:27 +00:00
)
text_tokenizier_button.click(tokenize_text,
inputs=text_tokenizier_input,
outputs=text_tokenizier_output
)
refresh_configs.click(
lambda: gr.update(choices=get_training_list()),
inputs=None,
outputs=training_configs
)
start_training_button.click(run_training,
inputs=[
training_configs,
verbose_training,
2023-03-12 06:00:03 +00:00
keep_x_past_checkpoints,
],
outputs=[
training_output,
],
)
training_output.change(
fn=update_training_dataplot,
inputs=None,
outputs=[
training_loss_graph,
training_lr_graph,
],
show_progress=False,
)
view_losses.click(
fn=update_training_dataplot,
inputs=[
training_configs
],
outputs=[
training_loss_graph,
training_lr_graph,
],
)
stop_training_button.click(stop_training,
inputs=None,
outputs=training_output #console_output
)
2023-02-23 06:24:54 +00:00
reconnect_training_button.click(reconnect_training,
inputs=[
verbose_training,
],
outputs=training_output #console_output
)
transcribe_button.click(
prepare_dataset_proxy,
inputs=dataset_settings,
outputs=prepare_dataset_output #console_output
)
prepare_dataset_button.click(
prepare_dataset,
inputs=[
DATASET_SETTINGS['voice'],
DATASET_SETTINGS['slice'],
DATASET_SETTINGS['validation_text_length'],
DATASET_SETTINGS['validation_audio_length'],
],
outputs=prepare_dataset_output #console_output
)
slice_dataset_button.click(
2023-03-21 20:31:01 +00:00
slice_dataset_proxy,
inputs=[
DATASET_SETTINGS['voice'],
DATASET_SETTINGS['trim_silence'],
DATASET_SETTINGS['slice_start_offset'],
DATASET_SETTINGS['slice_end_offset'],
],
outputs=prepare_dataset_output
)
training_refresh_dataset.click(
lambda: gr.update(choices=get_dataset_list()),
inputs=None,
outputs=TRAINING_SETTINGS["voice"],
)
training_settings = list(TRAINING_SETTINGS.values())
training_optimize_configuration.click(optimize_training_settings_proxy,
inputs=training_settings,
outputs=training_settings[:-1] + [training_configuration_output] #console_output
)
training_import_settings.click(import_training_settings_proxy,
inputs=TRAINING_SETTINGS['voice'],
outputs=training_settings[:-1] + [training_configuration_output] #console_output
)
training_save_configuration.click(save_training_settings_proxy,
inputs=training_settings,
outputs=training_configuration_output #console_output
)
if os.path.isfile('./config/generate.json'):
ui.load(import_generate_settings_proxy, inputs=None, outputs=generate_settings)
2023-02-17 00:08:27 +00:00
if args.check_for_updates:
ui.load(check_for_updates)
stop.click(fn=cancel_generate, inputs=None, outputs=None)
2023-02-17 00:08:27 +00:00
ui.queue(concurrency_count=args.concurrency_count)
webui = ui
return webui