diff --git a/models/.template.yaml b/models/.template.yaml
index 825ac0c..77e5113 100755
--- a/models/.template.yaml
+++ b/models/.template.yaml
@@ -11,7 +11,7 @@ use_tb_logger: true
 datasets:
   train:
     name: ${dataset_name}
-    n_workers: 8
+    n_workers: ${workers}
     batch_size: ${batch_size}
     mode: paired_voice_audio
     path: ${dataset_path}
diff --git a/src/utils.py b/src/utils.py
index 1f6a707..89dd1d1 100755
--- a/src/utils.py
+++ b/src/utils.py
@@ -37,6 +37,8 @@ from tortoise.utils.text import split_and_recombine_text
 from tortoise.utils.device import get_device_name, set_device_name
 
 MODELS['dvae.pth'] = "https://huggingface.co/jbetker/tortoise-tts-v2/resolve/3704aea61678e7e468a06d8eea121dba368a798e/.models/dvae.pth"
+WHISPER_MODELS = ["tiny", "base", "small", "medium", "large"]
+WHISPER_SPECIALIZED_MODELS = ["tiny.en", "base.en", "small.en", "medium.en"]
 
 args = None
 tts = None
@@ -663,6 +665,7 @@ class TrainingState():
 		# rip out iteration info
 		if not self.training_started:
 			if line.find('Start training from epoch') >= 0:
+				self.it_time_start = time.time()
 				self.epoch_time_start = time.time()
 				self.training_started = True # could just leverage the above variable, but this is python, and there's no point in these aggressive microoptimizations
 				should_return = True
@@ -703,11 +706,12 @@ class TrainingState():
 					self.it_time_delta = self.it_time_end-self.it_time_start
 					self.it_time_start = time.time()
 					self.it_taken = self.it_taken + 1
-					try:
-						rate = f'{"{:.3f}".format(self.it_time_delta)}s/it' if self.it_time_delta >= 1 else f'{"{:.3f}".format(1/self.it_time_delta)}it/s'
-						self.it_rate = rate
-					except Exception as e:
-						pass
+					if self.it_time_delta:
+						try:
+							rate = f'{"{:.3f}".format(self.it_time_delta)}s/it' if self.it_time_delta >= 1 else f'{"{:.3f}".format(1/self.it_time_delta)}it/s'
+							self.it_rate = rate
+						except Exception as e:
+							pass
 
 					metric_step = [f"{self.epoch}/{self.epochs}", f"{self.it}/{self.its}", f"{step}/{steps}"]
 					metric_step = ", ".join(metric_step)
@@ -733,9 +737,23 @@ class TrainingState():
 					metric_loss = []
 					if len(self.losses) > 0:
 						metric_loss.append(f'Loss: {"{:3f}".format(self.losses[-1]["value"])}')
+
+					if len(self.losses) >= 2:
+						delta_loss = self.losses[-2]["value"] - self.losses[-1]["value"]
+						delta_step = self.losses[-2]["step"] - self.losses[-1]["step"]
+
+						inst_deriv = delta_loss / delta_step
+						est_loss = delta_loss + (self.its - self.it) * inst_deriv
+						metric_loss.append(f'Est. Final Loss: {"{:3f}".format(est_loss)}')
+
+						print(delta_loss, delta_step, inst_deriv, est_loss)
+
+
 					metric_loss = ", ".join(metric_loss)
 
-					message = f'[{metric_step}] [{metric_rate}] [{metric_loss}] [ETA: {eta_hhmmss}]'
+
+
+					message = f'[{metric_step}] [{metric_rate}] [ETA: {eta_hhmmss}] [{metric_loss}]'
 
 			if lapsed:
 				self.epoch = self.epoch + 1
@@ -764,6 +782,13 @@ class TrainingState():
 				self.buffer.append(f'[{"{:.3f}".format(percent*100)}%] {message}')
 
 			if line.find('INFO: [epoch:') >= 0:
+				# to-do, actually validate this works, and probably kill training when it's found, the model's dead by this point
+				if ': nan' in line:
+					should_return = True
+
+					print("! NAN DETECTED !")
+					self.buffer.append("! NAN DETECTED !")
+
 				# easily rip out our stats...
 				match = re.findall(r'\b([a-z_0-9]+?)\b: +?([0-9]\.[0-9]+?e[+-]\d+|[\d,]+)\b', line)
 				if match and len(match) > 0:
@@ -824,13 +849,13 @@ def run_training(config_path, verbose=False, gpus=1, keep_x_past_datasets=0, pro
 		if result:
 			yield result
 
+			if progress is not None and message:
+				progress(percent, message)
+
 	if training_state:
 		training_state.process.stdout.close()
 		return_code = training_state.process.wait()
 		training_state = None
-	
-	#if return_code:
-	#	raise subprocess.CalledProcessError(return_code, cmd)
 
 def get_training_losses():
 	global training_state
@@ -866,6 +891,9 @@ def reconnect_training(verbose=False, progress=gr.Progress(track_tqdm=True)):
 		if result:
 			yield result
 
+			if progress is not None and message:
+				progress(percent, message)
+
 def stop_training():
 	global training_state
 	if training_state is None:
@@ -910,10 +938,10 @@ def convert_to_halfp():
 def whisper_transcribe( file, language=None ):
 	# shouldn't happen, but it's for safety
 	if not whisper_model:
-		load_whisper_model(language=language if language else b'en')
+		load_whisper_model(language=language)
 
 	if not args.whisper_cpp:
-		return whisper_model.transcribe(file, language=language if language else "English")
+		return whisper_model.transcribe(file, language=language)
 
 	res = whisper_model.transcribe(file)
 	segments = whisper_model.extract_text_and_timestamps( res )
@@ -945,11 +973,8 @@ def prepare_dataset( files, outdir, language=None, progress=None ):
 	transcription = []
 
 	for file in enumerate_progress(files, desc="Iterating through voice files", progress=progress):
-		print(f"Transcribing file: {file}")
-		
-		result = whisper_transcribe(file, language=language) # whisper_model.transcribe(file, language=language if language else "English")
+		result = whisper_transcribe(file, language=language)
 		results[os.path.basename(file)] = result
-
 		print(f"Transcribed file: {file}, {len(result['segments'])} found.")
 
 		waveform, sampling_rate = torchaudio.load(file)
@@ -988,7 +1013,7 @@ EPOCH_SCHEDULE = [ 9, 18, 25, 33 ]
 def schedule_learning_rate( iterations, schedule=EPOCH_SCHEDULE ):
 	return [int(iterations * d) for d in schedule]
 
-def optimize_training_settings( epochs, learning_rate, text_ce_lr_weight, learning_rate_schedule, batch_size, gradient_accumulation_size, print_rate, save_rate, resume_path, half_p, bnb, source_model, voice ):
+def optimize_training_settings( epochs, learning_rate, text_ce_lr_weight, learning_rate_schedule, batch_size, gradient_accumulation_size, print_rate, save_rate, resume_path, half_p, bnb, workers, source_model, voice ):
 	name = f"{voice}-finetune"
 	dataset_name = f"{voice}-train"
 	dataset_path = f"./training/{voice}/train.txt"
@@ -1065,7 +1090,7 @@ def optimize_training_settings( epochs, learning_rate, text_ce_lr_weight, learni
 		messages
 	)
 
-def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weight=None, learning_rate_schedule=None, batch_size=None, gradient_accumulation_size=None, print_rate=None, save_rate=None, name=None, dataset_name=None, dataset_path=None, validation_name=None, validation_path=None, output_name=None, resume_path=None, half_p=None, bnb=None, source_model=None ):
+def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weight=None, learning_rate_schedule=None, batch_size=None, gradient_accumulation_size=None, print_rate=None, save_rate=None, name=None, dataset_name=None, dataset_path=None, validation_name=None, validation_path=None, output_name=None, resume_path=None, half_p=None, bnb=None, workers=None, source_model=None ):
 	if not source_model:
 		source_model = f"./models/tortoise/autoregressive{'_half' if half_p else ''}.pth"
 
@@ -1090,6 +1115,8 @@ def save_training_settings( iterations=None, learning_rate=None, text_ce_lr_weig
 
 		'float16': 'true' if half_p else 'false',
 		'bitsandbytes': 'true' if bnb else 'false',
+
+		'workers': workers if workers else 2,
 	}
 
 	if resume_path:
@@ -1581,9 +1608,9 @@ def unload_tts():
 	global tts
 
 	if tts:
-		print("Unloading TTS")
 		del tts
 		tts = None
+		print("Unloaded TTS")
 	do_gc()
 
 def reload_tts( model=None ):
@@ -1656,55 +1683,44 @@ def unload_voicefixer():
 	global voicefixer
 
 	if voicefixer:
-		print("Unloading Voicefixer")
 		del voicefixer
 		voicefixer = None
 		print("Unloaded Voicefixer")
 
 	do_gc()
 
-def load_whisper_model(name=None, progress=None, language=b'en'):
+def load_whisper_model(language=None, model_name=None, progress=None):
 	global whisper_model
 	
-	if not name:
-		name = args.whisper_model
+	if not model_name:
+		model_name = args.whisper_model
 	else:
-		args.whisper_model = name
+		args.whisper_model = model_name
 		save_args_settings()
 
-	notify_progress(f"Loading Whisper model: {args.whisper_model}", progress)
+	if language and f'{model_name}.{language}' in WHISPER_SPECIALIZED_MODELS:
+		model_name = f'{model_name}.{language}'
+		print(f"Loading specialized model for language: {language}")
+
+	notify_progress(f"Loading Whisper model: {model_name}", progress)
 	if args.whisper_cpp:
 		from whispercpp import Whisper
-		whisper_model = Whisper(name, models_dir='./models/', language=language.encode('ascii'))
+		if not language:
+			language = 'auto'
+
+		whisper_model = Whisper(model_name, models_dir='./models/', language=language.encode('ascii'))
 	else:
 		import whisper
-		whisper_model = whisper.load_model(args.whisper_model)
+		whisper_model = whisper.load_model(model_name)
+
 	print("Loaded Whisper model")
 
 def unload_whisper():
 	global whisper_model
 
 	if whisper_model:
-		print("Unloading Whisper")
 		del whisper_model
 		whisper_model = None
 		print("Unloaded Whisper")
 
-	do_gc()
-
-"""
-def update_whisper_model(name, progress=None):
-	if not name:
-		return
-
-	args.whisper_model = name
-	save_args_settings()
-
-	global whisper_model
-	if whisper_model:
-		unload_whisper()
-		load_whisper_model(name)
-	else:
-		args.whisper_model = name
-		save_args_settings()
-"""
\ No newline at end of file
+	do_gc()
\ No newline at end of file
diff --git a/src/webui.py b/src/webui.py
index 89d9462..3ca76d0 100755
--- a/src/webui.py
+++ b/src/webui.py
@@ -268,6 +268,8 @@ def import_training_settings_proxy( voice ):
 	if "ext" in config and "bitsandbytes" in config["ext"]:
 		bnb = config["ext"]["bitsandbytes"]
 
+	workers = config['datasets']['train']['n_workers']
+
 	messages = "\n".join(messages)
 
 	return (
@@ -282,12 +284,13 @@ def import_training_settings_proxy( voice ):
 		resume_path,
 		half_p,
 		bnb,
+		workers,
 		source_model,
 		messages
 	)
 
 
-def save_training_settings_proxy( epochs, learning_rate, text_ce_lr_weight, learning_rate_schedule, batch_size, gradient_accumulation_size, print_rate, save_rate, resume_path, half_p, bnb, source_model, voice ):
+def save_training_settings_proxy( epochs, learning_rate, text_ce_lr_weight, learning_rate_schedule, batch_size, gradient_accumulation_size, print_rate, save_rate, resume_path, half_p, bnb, workers, source_model, voice ):
 	name = f"{voice}-finetune"
 	dataset_name = f"{voice}-train"
 	dataset_path = f"./training/{voice}/train.txt"
@@ -330,6 +333,7 @@ def save_training_settings_proxy( epochs, learning_rate, text_ce_lr_weight, lear
 		resume_path=resume_path,
 		half_p=half_p,
 		bnb=bnb,
+		workers=workers,
 		source_model=source_model,
 	))
 	return "\n".join(messages)
@@ -466,7 +470,7 @@ def setup_gradio():
 					with gr.Column():
 						dataset_settings = [
 							gr.Dropdown( choices=voice_list, label="Dataset Source", type="value", value=voice_list[0] if len(voice_list) > 0 else "" ),
-							gr.Textbox(label="Language", placeholder="English")
+							gr.Textbox(label="Language", value="en")
 						]
 						prepare_dataset_button = gr.Button(value="Prepare")
 					with gr.Column():
@@ -499,11 +503,16 @@ def setup_gradio():
 						training_settings = training_settings + [
 							gr.Textbox(label="Resume State Path", placeholder="./training/${voice}-finetune/training_state/${last_state}.state"),
 						]
-						training_halfp = gr.Checkbox(label="Half Precision", value=args.training_default_halfp)
-						training_bnb = gr.Checkbox(label="BitsAndBytes", value=args.training_default_bnb)
+
+						with gr.Row():
+							training_halfp = gr.Checkbox(label="Half Precision", value=args.training_default_halfp)
+							training_bnb = gr.Checkbox(label="BitsAndBytes", value=args.training_default_bnb)
+
+						training_workers = gr.Number(label="Worker Processes", value=2, precision=0)
+
 						source_model = gr.Dropdown( choices=autoregressive_models, label="Source Model", type="value", value=autoregressive_models[0] )
 						dataset_list_dropdown = gr.Dropdown( choices=dataset_list, label="Dataset", type="value", value=dataset_list[0] if len(dataset_list) else ""  )
-						training_settings = training_settings + [ training_halfp, training_bnb, source_model, dataset_list_dropdown ]
+						training_settings = training_settings + [ training_halfp, training_bnb, training_workers, source_model, dataset_list_dropdown ]
 
 						with gr.Row():
 							refresh_dataset_list = gr.Button(value="Refresh Dataset List")
@@ -572,7 +581,7 @@ def setup_gradio():
 					
 					autoregressive_model_dropdown = gr.Dropdown(choices=autoregressive_models, label="Autoregressive Model", value=args.autoregressive_model if args.autoregressive_model else autoregressive_models[0])
 					
-					whisper_model_dropdown = gr.Dropdown(["tiny", "tiny.en", "base", "base.en", "small", "small.en", "medium", "medium.en", "large"], label="Whisper Model", value=args.whisper_model)
+					whisper_model_dropdown = gr.Dropdown(WHISPER_MODELS, label="Whisper Model", value=args.whisper_model)
 					use_whisper_cpp = gr.Checkbox(label="Use Whisper.cpp", value=args.whisper_cpp)
 					
 					exec_inputs = exec_inputs + [ autoregressive_model_dropdown, whisper_model_dropdown, use_whisper_cpp, training_halfp, training_bnb ]
@@ -797,7 +806,7 @@ def setup_gradio():
 		)
 		import_dataset_button.click(import_training_settings_proxy,
 			inputs=dataset_list_dropdown,
-			outputs=training_settings[:11] + [save_yaml_output] #console_output
+			outputs=training_settings[:13] + [save_yaml_output] #console_output
 		)
 		save_yaml_button.click(save_training_settings_proxy,
 			inputs=training_settings,