forked from mrq/DL-Art-School
133 lines
4.9 KiB
Python
133 lines
4.9 KiB
Python
|
import functools
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
import models.modules.module_util as mutil
|
||
|
from utils.util import opt_get
|
||
|
|
||
|
|
||
|
class ResidualDenseBlock_5C(nn.Module):
|
||
|
def __init__(self, nf=64, gc=32, bias=True):
|
||
|
super(ResidualDenseBlock_5C, self).__init__()
|
||
|
# gc: growth channel, i.e. intermediate channels
|
||
|
self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
|
||
|
self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
|
||
|
self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
|
||
|
self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
|
||
|
self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
|
||
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||
|
|
||
|
# initialization
|
||
|
mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x1 = self.lrelu(self.conv1(x))
|
||
|
x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
|
||
|
x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
|
||
|
x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
|
||
|
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
|
||
|
return x5 * 0.2 + x
|
||
|
|
||
|
|
||
|
class RRDB(nn.Module):
|
||
|
'''Residual in Residual Dense Block'''
|
||
|
|
||
|
def __init__(self, nf, gc=32):
|
||
|
super(RRDB, self).__init__()
|
||
|
self.RDB1 = ResidualDenseBlock_5C(nf, gc)
|
||
|
self.RDB2 = ResidualDenseBlock_5C(nf, gc)
|
||
|
self.RDB3 = ResidualDenseBlock_5C(nf, gc)
|
||
|
|
||
|
def forward(self, x):
|
||
|
out = self.RDB1(x)
|
||
|
out = self.RDB2(out)
|
||
|
out = self.RDB3(out)
|
||
|
return out * 0.2 + x
|
||
|
|
||
|
|
||
|
class RRDBNet(nn.Module):
|
||
|
def __init__(self, in_nc, out_nc, nf, nb, gc=32, scale=4, opt=None):
|
||
|
self.opt = opt
|
||
|
super(RRDBNet, self).__init__()
|
||
|
RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)
|
||
|
self.scale = scale
|
||
|
|
||
|
self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
|
||
|
self.RRDB_trunk = mutil.make_layer(RRDB_block_f, nb)
|
||
|
self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||
|
#### upsampling
|
||
|
self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||
|
self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||
|
if self.scale >= 8:
|
||
|
self.upconv3 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||
|
if self.scale >= 16:
|
||
|
self.upconv4 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||
|
if self.scale >= 32:
|
||
|
self.upconv5 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||
|
|
||
|
self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
|
||
|
self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)
|
||
|
|
||
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
||
|
|
||
|
def forward(self, x, get_steps=False):
|
||
|
fea = self.conv_first(x)
|
||
|
|
||
|
block_idxs = opt_get(self.opt, ['network_G', 'flow', 'stackRRDB', 'blocks']) or []
|
||
|
block_results = {}
|
||
|
|
||
|
for idx, m in enumerate(self.RRDB_trunk.children()):
|
||
|
fea = m(fea)
|
||
|
for b in block_idxs:
|
||
|
if b == idx:
|
||
|
block_results["block_{}".format(idx)] = fea
|
||
|
|
||
|
trunk = self.trunk_conv(fea)
|
||
|
|
||
|
last_lr_fea = fea + trunk
|
||
|
|
||
|
fea_up2 = self.upconv1(F.interpolate(last_lr_fea, scale_factor=2, mode='nearest'))
|
||
|
fea = self.lrelu(fea_up2)
|
||
|
|
||
|
fea_up4 = self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest'))
|
||
|
fea = self.lrelu(fea_up4)
|
||
|
|
||
|
fea_up8 = None
|
||
|
fea_up16 = None
|
||
|
fea_up32 = None
|
||
|
|
||
|
if self.scale >= 8:
|
||
|
fea_up8 = self.upconv3(F.interpolate(fea, scale_factor=2, mode='nearest'))
|
||
|
fea = self.lrelu(fea_up8)
|
||
|
if self.scale >= 16:
|
||
|
fea_up16 = self.upconv4(F.interpolate(fea, scale_factor=2, mode='nearest'))
|
||
|
fea = self.lrelu(fea_up16)
|
||
|
if self.scale >= 32:
|
||
|
fea_up32 = self.upconv5(F.interpolate(fea, scale_factor=2, mode='nearest'))
|
||
|
fea = self.lrelu(fea_up32)
|
||
|
|
||
|
out = self.conv_last(self.lrelu(self.HRconv(fea)))
|
||
|
|
||
|
results = {'last_lr_fea': last_lr_fea,
|
||
|
'fea_up1': last_lr_fea,
|
||
|
'fea_up2': fea_up2,
|
||
|
'fea_up4': fea_up4,
|
||
|
'fea_up8': fea_up8,
|
||
|
'fea_up16': fea_up16,
|
||
|
'fea_up32': fea_up32,
|
||
|
'out': out}
|
||
|
|
||
|
fea_up0_en = opt_get(self.opt, ['network_G', 'flow', 'fea_up0']) or False
|
||
|
if fea_up0_en:
|
||
|
results['fea_up0'] = F.interpolate(last_lr_fea, scale_factor=1/2, mode='bilinear', align_corners=False, recompute_scale_factor=True)
|
||
|
fea_upn1_en = opt_get(self.opt, ['network_G', 'flow', 'fea_up-1']) or False
|
||
|
if fea_upn1_en:
|
||
|
results['fea_up-1'] = F.interpolate(last_lr_fea, scale_factor=1/4, mode='bilinear', align_corners=False, recompute_scale_factor=True)
|
||
|
|
||
|
if get_steps:
|
||
|
for k, v in block_results.items():
|
||
|
results[k] = v
|
||
|
return results
|
||
|
else:
|
||
|
return out
|