forked from mrq/DL-Art-School
42 lines
1.5 KiB
Python
42 lines
1.5 KiB
Python
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
class ZeroPadDictCollate():
|
||
|
"""
|
||
|
Given a list of dictionary outputs with torch.Tensors from a Dataset, iterates through each one, finds the longest
|
||
|
tensor, and zero pads all the other tensors together.
|
||
|
"""
|
||
|
def collate_tensors(self, batch, key):
|
||
|
result = []
|
||
|
largest_dims = [0 for _ in range(len(batch[0][key].shape))]
|
||
|
for elem in batch:
|
||
|
result.append(elem[key])
|
||
|
largest_dims = [max(current_largest, new_consideration) for current_largest, new_consideration in zip(largest_dims, elem[key].shape)]
|
||
|
# Now pad each tensor by the largest dimension.
|
||
|
for i in range(len(result)):
|
||
|
padding_tuple = ()
|
||
|
for d in range(len(largest_dims)):
|
||
|
padding_needed = largest_dims[d] - result[i].shape[d]
|
||
|
assert padding_needed >= 0
|
||
|
padding_tuple = (0, padding_needed) + padding_tuple
|
||
|
result[i] = F.pad(result[i], padding_tuple)
|
||
|
|
||
|
return torch.stack(result, dim=0)
|
||
|
|
||
|
|
||
|
def collate_into_list(self, batch, key):
|
||
|
result = []
|
||
|
for elem in batch:
|
||
|
result.append(elem[key])
|
||
|
return result
|
||
|
|
||
|
def __call__(self, batch):
|
||
|
first_dict = batch[0]
|
||
|
collated = {}
|
||
|
for key in first_dict.keys():
|
||
|
if isinstance(first_dict[key], torch.Tensor):
|
||
|
collated[key] = self.collate_tensors(batch, key)
|
||
|
else:
|
||
|
collated[key] = self.collate_into_list(batch, key)
|
||
|
return collated
|